TY - JOUR A1 - Oskinova, Lidia M. A1 - Huenemoerder, D. P. A1 - Hamann, Wolf-Rainer A1 - Shenar, Tomer A1 - Sander, Andreas Alexander Christoph A1 - Ignace, R. A1 - Todt, Helge Tobias A1 - Hainich, Rainer T1 - On the Binary Nature of Massive Blue Hypergiants: High-resolution X-Ray Spectroscopy Suggests That Cyg OB2 12 is a Colliding Wind Binary JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - The blue hypergiant Cyg OB2 12 (B3Ia(+)) is a representative member of the class of very massive stars in a poorly understood evolutionary stage. We obtained its high-resolution X-ray spectrum using the Chandra observatory. PoWR model atmospheres were calculated to provide realistic wind opacities and to establish the wind density structure. We find that collisional de-excitation is the dominant mechanism depopulating the metastable upper levels of the forbidden lines of the He-like ions Si XIV and Mg XII. Comparison between the model and observations reveals that X-ray emission is produced in a dense plasma, which could reside only at the photosphere or in a colliding wind zone between binary components. The observed X-ray spectra are well-fitted by thermal plasma models, with average temperatures in excess of 10 MK. The wind speed in Cyg OB2 12 is not high enough to power such high temperatures, but the collision of two winds in a binary system can be sufficient. We used archival data to investigate the X-ray properties of other blue hypergiants. In general, stars of this class are not detected as X-ray sources. We suggest that our new Chandra observations of Cyg OB2 12 can be best explained if Cyg OB2 12 is a colliding wind binary possessing a late O-type companion. This makes Cyg OB2 12 only the second binary system among the 16 known Galactic hypergiants. This low binary fraction indicates that the blue hypergiants are likely products of massive binary evolution during which they either accreted a significant amount of mass or already merged with their companions. KW - stars: individual (Cyg OB2 12) KW - stars: massive KW - stars: mass-loss KW - stars: winds, outflows KW - supergiants KW - X-rays: stars Y1 - 2017 U6 - https://doi.org/10.3847/1538-4357/aa7e79 SN - 0004-637X SN - 1538-4357 VL - 845 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Oskinova, Lidia M. A1 - Bulik, Tomasz A1 - Gomez-Moran, Ada Nebot T1 - Infrared outbursts as potential tracers of common-envelope events in high-mass X-ray binary formation JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Classic massive binary evolutionary scenarios predict that a transitional common-envelope (CE) phase could be preceded as well as succeeded by the evolutionary stage when a binary consists of a compact object and a massive star, that is, a high-mass X-ray binary (HMXB). The observational manifestations of common envelope are poorly constrained. We speculate that its ejection might be observed in some cases as a transient event at mid-infrared (IR) wavelengths. Aims. We estimate the expected numbers of CE ejection events and HMXBs per star formation unit rate, and compare these theoretical estimates with observations. Methods. We compiled a list of 85 mid-IR transients of uncertain nature detected by the Spitzer Infrared Intensive Transients Survey and searched for their associations with X-ray, optical, and UV sources. Results. Confirming our theoretical estimates, we find that only one potential HMXB may be plausibly associated with an IR-transient and tentatively propose that X-ray source NGC4490-X40 could be a precursor to the SPIRITS 16az event. Among other interesting sources, we suggest that the supernova remnant candidate [BWL2012] 063 might be associated with SPIRITS 16ajc. We also find that two SPIRITS events are likely associated with novae, and seven have potential optical counterparts. Conclusions. The massive binary evolutionary scenarios that involve CE events do not contradict currently available observations of IR transients and HMXBs in star-forming galaxies. KW - X-rays: binaries KW - stars: massive KW - infrared: general KW - infrared: galaxies Y1 - 2018 U6 - https://doi.org/10.1051/0004-6361/201832925 SN - 0004-6361 SN - 1432-0746 VL - 613 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Naze, Y. A1 - Broos, Patrick S. A1 - Oskinova, Lidia M. A1 - Townsley, L. K. A1 - Cohen, David H. A1 - Corcoran, M. F. A1 - Evans, N. R. A1 - Gagne, M. A1 - Moffat, Anthony F. J. A1 - Pittard, J. M. A1 - Rauw, G. A1 - Ud-Doula, A. A1 - Walborn, N. R. T1 - GLOBAL X-RAY PROPERTIES OF THE O AND B STARS IN CARINA JF - ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES N2 - The key empirical property of the X-ray emission from O stars is a strong correlation between the bolometric and X-ray luminosities. In the framework of the Chandra Carina Complex Project, 129 O and B stars have been detected as X-ray sources; 78 of those, all with spectral type earlier than B3, have enough counts for at least a rough X-ray spectral characterization. This leads to an estimate of the L-X-L-BOL ratio for an exceptional number of 60 O stars belonging to the same region and triples the number of Carina massive stars studied spectroscopically in X-rays. The derived log(L-X/L-BOL) is -7.26 for single objects, with a dispersion of only 0.21 dex. Using the properties of hot massive stars listed in the literature, we compare the X-ray luminosities of different types of objects. In the case of O stars, the L-X-L-BOL ratios are similar for bright and faint objects, as well as for stars of different luminosity classes or spectral types. Binaries appear only slightly harder and slightly more luminous in X-rays than single objects; the differences are not formally significant (at the 1% level), except for the L-X-L-BOL ratio in the medium (1.0-2.5 keV) energy band. Weak-wind objects have similar X-ray luminosities but they display slightly softer spectra compared with "normal" O stars with the same bolometric luminosity. Discarding three overluminous objects, we find a very shallow trend of harder emission in brighter objects. The properties of the few B stars bright enough to yield some spectral information appear to be different overall (constant X-ray luminosities, harder spectra), hinting that another mechanism for producing X-rays, besides wind shocks, might be at work. However, it must be stressed that the earliest and X-ray brightest among these few detected objects are similar to the latest O stars, suggesting a possibly smooth transition between the two processes. KW - ISM: individual objects (Carina nebula) KW - stars: massive KW - X-rays: stars Y1 - 2011 U6 - https://doi.org/10.1088/0067-0049/194/1/7 SN - 0067-0049 VL - 194 IS - 1 PB - IOP PUBLISHING LTD CY - BRISTOL ER - TY - JOUR A1 - Meyer, Dominique M.-A. A1 - Velazquez, Pablo F. A1 - Petruk, Oleh A1 - Chiotellis, Alexandros A1 - Pohl, Martin A1 - Camps-Farina, Artemi A1 - Petrov, Miroslav A1 - Reynoso, Estela M. A1 - Toledo-Roy, Juan C. A1 - Schneiter, E. Matias A1 - Castellanos-Ramirez, Antonio A1 - Esquivel, Alejandro T1 - Rectangular core-collapse supernova remnants BT - application to Puppis A JF - Monthly notices of the Royal Astronomical Society N2 - Core-collapse supernova remnants are the gaseous nebulae of galactic interstellar media (ISM) formed after the explosive death of massive stars. Their morphology and emission properties depend both on the surrounding circumstellar structure shaped by the stellar wind-ISM interaction of the progenitor star and on the local conditions of the ambient medium. In the warm phase of the Galactic plane (n approximate to 1 cm(-3), T approximate to 8000 K), an organized magnetic field of strength 7 mu G has profound consequences on the morphology of the wind bubble of massive stars at rest. In this paper, we show through 2.5D magnetohydrodynamical simulations, in the context of a Wolf-Rayet-evolving 35 M 0 star, that it affects the development of its supernova remnant. When the supernova remnant reaches its middle age (15-20 kyr), it adopts a tubular shape that results from the interaction between the isotropic supernova ejecta and the anisotropic, magnetized, shocked stellar progenitor bubble into which the supernova blast wave expands. Our calculations for non-thermal emission, i.e. radio synchrotron and inverse-Compton radiation, reveal that such supernova remnants can, due to projection effects, appear as rectangular objects in certain cases. This mechanism for shaping a supernova remnant is similar to the bipolar and elliptical planetary nebula production by wind-wind interaction in the low-mass regime of stellar evolution. If such a rectangular core-collapse supernova remnant is created, the progenitor star must not have been a runaway star. We propose that such a mechanism is at work in the shaping of the asymmetric core-collapse supernova remnant Puppis A. KW - stars: evolution KW - stars: massive KW - ISM: supernova remnants KW - methods: MHD Y1 - 2022 U6 - https://doi.org/10.1093/mnras/stac1832 SN - 0035-8711 SN - 1365-2966 VL - 515 IS - 1 SP - 594 EP - 605 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Meyer, Dominique M.-A. A1 - Pohl, Martin A1 - Petrov, Miroslav A1 - Egberts, Kathrin T1 - Mixing of materials in magnetized core-collapse supernova remnants JF - Monthly notices of the Royal Astronomical Society N2 - Core-collapse supernova remnants are structures of the interstellar medium (ISM) left behind the explosive death of most massive stars ( ?40 M-?). Since they result in the expansion of the supernova shock wave into the gaseous environment shaped by the star's wind history, their morphology constitutes an insight into the past evolution of their progenitor star. Particularly, fast-mo ving massiv e stars can produce asymmetric core-collapse superno va remnants. We inv estigate the mixing of materials in core-collapse supernova remnants generated by a moving massive 35 M-? star, in a magnetized ISM. Stellar rotation and the wind magnetic field are time-dependently included into the models which follow the entire evolution of the stellar surroundings from the zero-age main-sequence to 80 kyr after the supernova explosion. It is found that very little main-sequence material is present in remnants from moving stars, that the Wolf-Rayet wind mixes very efficiently within the 10 kyr after the explosion, while the red supergiant material is still unmixed by 30 per cent within 50 kyr after the supernova. Our results indicate that the faster the stellar motion, the more complex the internal organization of the supernova remnant and the more ef fecti ve the mixing of ejecta therein. In contrast, the mixing of stellar wind material is only weakly affected by progenitor motion, if at all. KW - ISM : supernova remnants KW - (magnetohydrodynamics) MHD KW - stars evolution KW - stars: massive Y1 - 2023 U6 - https://doi.org/10.1093/mnras/stad906 SN - 0035-8711 SN - 1365-2966 VL - 521 IS - 4 SP - 5354 EP - 5371 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Meyer, Dominique M.-A. A1 - Petrov, Mykola A1 - Pohl, Martin T1 - Wind nebulae and supernova remnants of very massive stars JF - Monthly notices of the Royal Astronomical Society N2 - A very small fraction of (runaway) massive stars have masses exceeding 60-70 M-circle dot and are predicted to evolve as luminous blue variable and Wolf-Rayet stars before ending their lives as core-collapse supernovae. Our 2D axisymmetric hydrodynamical simulations explore how a fast wind (2000 km s(-1)) and high mass-loss rate (10(-5)M(circle dot) yr(-1)) can impact the morphology of the circumstellar medium. It is shaped as 100 pc-scale wind nebula that can be pierced by the driving star when it supersonically moves with velocity 20-40 km s(-1) through the interstellar medium (ISM) in the Galactic plane. The motion of such runaway stars displaces the position of the supernova explosion out of their bow shock nebula, imposing asymmetries to the eventual shock wave expansion and engendering Cygnus-loop-like supernova remnants. We conclude that the size (up to more than 200 pc) of the filamentary wind cavity in which the chemically enriched supernova ejecta expand, mixing efficiently the wind and ISM materials by at least 10 per cent in number density, can be used as a tracer of the runaway nature of the very massive progenitors of such 0.1Myr old remnants. Our results motivate further observational campaigns devoted to the bow shock of the very massive stars BD+43 degrees 3654 and to the close surroundings of the synchrotron-emitting Wolf-Rayet shell G2.4+1.4. KW - shock waves KW - methods: numerical KW - circumstellar matter KW - stars: massive Y1 - 2020 U6 - https://doi.org/10.1093/mnras/staa554 SN - 0035-8711 SN - 1365-2966 VL - 493 IS - 3 SP - 3548 EP - 3564 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Meyer, Dominique M.-A. T1 - On the bipolarity of Wolf-Rayet nebulae JF - Monthly notices of the Royal Astronomical Society N2 - Wolf-Rayet stars are amongst the rarest but also most intriguing massive stars. Their extreme stellar winds induce famous multiwavelength circumstellar gas nebulae of various morphologies, spanning from circles and rings to bipolar shapes. This study is devoted to the investigation of the formation of young, asymmetric Wolf-Rayet gas nebulae and we present a 2.5-dimensional magneto-hydrodynamical toy model for the simulation of Wolf-Rayet gas nebulae generated by wind-wind interaction. Our method accounts for stellar wind asymmetries, rotation, magnetization, evolution, and mixing of materials. It is found that the morphology of the Wolf-Rayet nebulae of blue supergiant ancestors is tightly related to the wind geometry and to the stellar phase transition time interval, generating either a broadened peanut-like or a collimated jet-like gas nebula. Radiative transfer calculations of our Wolf-Rayet nebulae for dust infrared emission at 24 mu m show that the projected diffuse emission can appear as oblate, bipolar, ellipsoidal, or ring structures. Important projection effects are at work in shaping observed Wolf-Rayet nebulae. This might call a revision of the various classifications of Wolf-Rayet shells, which are mostly based on their observed shape. Particularly, our models question the possibility of producing pre-Wolf-Rayet wind asymmetries, responsible for bipolar nebulae like NGC 6888, within the single red supergiant evolution channel scenario. We propose that bipolar Wolf-Rayet nebulae can only be formed within the red supergiant scenario by multiple/merged massive stellar systems, or by single high-mass stars undergoing additional, e.g. blue supergiant, evolutionary stages prior to the Wolf-Rayet phase. KW - MHD KW - radiative transfer KW - circumstellar matter KW - stars: massive KW - stars: KW - Wolf-Rayet Y1 - 2021 U6 - https://doi.org/10.1093/mnras/stab2426 SN - 0035-8711 SN - 1365-2966 VL - 507 IS - 4 SP - 4697 EP - 4714 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Martinez-Nunez, Silvia A1 - Sander, Angelika A1 - Gimenez-Garcia, Angel A1 - Gonzalez-Galan, Ana A1 - Torrejon, Jose Miguel A1 - Gonzalez-Fernandez, Carlos A1 - Hamann, Wolf-Rainer T1 - The donor star of the X-ray pulsar X1908+075 JF - Astronomy and astrophysics : an international weekly journal N2 - High-mass X-ray binaries consist of a massive donor star and a compact object. While several of those systems have been well studied in X-rays, little is known for most of the donor stars as they are often heavily obscured in the optical and ultraviolet regime. There is an opportunity to observe them at infrared wavelengths, however. The goal of this study is to obtain the stellar and wind parameters of the donor star in the X1908+075 high-mass X-ray binary system with a stellar atmosphere model to check whether previous studies from X-ray observations and spectral morphology lead to a sufficient description of the donor star. We obtained H-and K-band spectra of X1908+075 and analysed them with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. For the first time, we calculated a stellar atmosphere model for the donor star, whose main parameters are: M-spec = 15 +/- 6 M-circle dot, T-* = 23(-3)(+6) kK, log g(eff) = 3.0 +/- 0.2 and log L/L-circle dot = 4.81 +/- 0.25. The obtained parameters point towards an early B-type (B0-B3) star, probably in a supergiant phase. Moreover we determined a more accurate distance to the system of 4.85 +/- 0.50 kpc than the previously reported value. KW - binaries: close KW - stars: individual: X1908+075 KW - stars: massive KW - stars: winds KW - outflows KW - X-rays: binaries Y1 - 2015 U6 - https://doi.org/10.1051/0004-6361/201424823 SN - 0004-6361 SN - 1432-0746 VL - 578 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Kurfürst, P. A1 - Feldmeier, Achim A1 - Krticka, Jiri T1 - Two-dimensional modeling of density and thermal structure of dense circumstellar outflowing disks JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Evolution of massive stars is affected by a significant loss of mass either via (nearly) spherically symmetric stellar winds or by aspherical mass-loss mechanisms, namely the outflowing equatorial disks. However, the scenario that leads to the formation of a disk or rings of gas and dust around massive stars is still under debate. It is also unclear how various forming physical mechanisms of the circumstellar environment affect its shape and density, as well as its kinematic and thermal structure. Results. Our models show the geometric distribution and contribution of viscous heating that begins to dominate in the central part of the disk for mass-loss rates higher than (M) over dot greater than or similar to 10(-10) M-circle dot yr(-1). In the models of dense viscous disks with (M) over dot > 10(-8) M-circle dot yr(-1), the viscosity increases the central temperature up to several tens of thousands of Kelvins, however the temperature rapidly drops with radius and with distance from the disk midplane. The high mass-loss rates and high viscosity lead to instabilities with significant waves or bumps in density and temperature in the very inner disk region. Conclusions. The two-dimensional radial-vertical models of dense outflowing disks including the full Navier-Stokes viscosity terms show very high temperatures that are however limited to only the central disk cores inside the optically thick area, while near the edge of the optically thick region the temperature may be low enough for the existence of neutral hydrogen, for example. KW - stars: massive KW - stars: mass-loss KW - stars: winds, outflows KW - stars: evolution KW - stars: rotation KW - hydrodynamics Y1 - 2018 U6 - https://doi.org/10.1051/0004-6361/201731300 SN - 1432-0746 VL - 613 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Kubatova, Brankica A1 - Szecsi, D. A1 - Sander, Andreas Alexander Christoph A1 - Kubat, Jiří A1 - Tramper, F. A1 - Krticka, Jiri A1 - Kehrig, C. A1 - Hamann, Wolf-Rainer A1 - Hainich, Rainer A1 - Shenar, Tomer T1 - Low-metallicity massive single stars with rotation BT - II. Predicting spectra and spectral classes of chemically homogeneously evolving stars JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Metal-poor massive stars are assumed to be progenitors of certain supernovae, gamma-ray bursts, and compact object mergers that might contribute to the early epochs of the Universe with their strong ionizing radiation. However, this assumption remains mainly theoretical because individual spectroscopic observations of such objects have rarely been carried out below the metallicity of the Small Magellanic Cloud. Aims. Here we explore the predictions of the state-of-the-art theories of stellar evolution combined with those of stellar atmospheres about a certain type of metal-poor (0.02 Z(circle dot)) hot massive stars, the chemically homogeneously evolving stars that we call Transparent Wind Ultraviolet INtense (TWUIN) stars. Methods. We computed synthetic spectra corresponding to a broad range in masses (20 130 M-circle dot) and covering several evolutionary phases from the zero-age main-sequence up to the core helium-burning stage. We investigated the influence of mass loss and wind clumping on spectral appearance and classified the spectra according to the Morgan-Keenan (MK) system. Results. We find that TWUIN stars show almost no emission lines during most of their core hydrogen-burning lifetimes. Most metal lines are completely absent, including nitrogen. During their core helium-burning stage, lines switch to emission, and even some metal lines (oxygen and carbon, but still almost no nitrogen) are detected. Mass loss and clumping play a significant role in line formation in later evolutionary phases, particularly during core helium-burning. Most of our spectra are classified as an early-O type giant or supergiant, and we find Wolf-Rayet stars of type WO in the core helium-burning phase. Conclusions. An extremely hot, early-O type star observed in a low-metallicity galaxy could be the result of chemically homogeneous evolution and might therefore be the progenitor of a long-duration gamma-ray burst or a type Ic supernova. TWUIN stars may play an important role in reionizing the Universe because they are hot without showing prominent emission lines during most of their lifetime. KW - stars: massive KW - stars: winds, outflows KW - stars: rotation KW - galaxies: dwarf KW - radiative transfer Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201834360 SN - 1432-0746 SN - 0004-6361 VL - 623 PB - EDP Sciences CY - Les Ulis ER -