TY - THES A1 - Jara Muñoz, Julius T1 - Quantifying forearc deformation patterns using coastal geomorphic markers T1 - Quantifizierung von Deformationsmustern mit Hilfe von Kustengeomorphologischen Markern BT - A comprehensive study of marine terraces along the 2010 Maule earthquake (M8.8) rupture zone N2 - Rapidly uplifting coastlines are frequently associated with convergent tectonic boundaries, like subduction zones, which are repeatedly breached by giant megathrust earthquakes. The coastal relief along tectonically active realms is shaped by the effect of sea-level variations and heterogeneous patterns of permanent tectonic deformation, which are accumulated through several cycles of megathrust earthquakes. However, the correlation between earthquake deformation patterns and the sustained long-term segmentation of forearcs, particularly in Chile, remains poorly understood. Furthermore, the methods used to estimate permanent deformation from geomorphic markers, like marine terraces, have remained qualitative and are based on unrepeatable methods. This contrasts with the increasing resolution of digital elevation models, such as Light Detection and Ranging (LiDAR) and high-resolution bathymetric surveys. Throughout this thesis I study permanent deformation in a holistic manner: from the methods to assess deformation rates, to the processes involved in its accumulation. My research focuses particularly on two aspects: Developing methodologies to assess permanent deformation using marine terraces, and comparing permanent deformation with seismic cycle deformation patterns under different spatial scales along the M8.8 Maule earthquake (2010) rupture zone. Two methods are developed to determine deformation rates from wave-built and wave-cut terraces respectively. I selected an archetypal example of a wave-built terrace at Santa Maria Island studying its stratigraphy and recognizing sequences of reoccupation events tied with eleven radiocarbon sample ages (14C ages). I developed a method to link patterns of reoccupation with sea-level proxies by iterating relative sea level curves for a range of uplift rates. I find the best fit between relative sea-level and the stratigraphic patterns for an uplift rate of 1.5 +- 0.3 m/ka. A Graphical User Interface named TerraceM® was developed in Matlab®. This novel software tool determines shoreline angles in wave-cut terraces under different geomorphic scenarios. To validate the methods, I select test sites in areas of available high-resolution LiDAR topography along the Maule earthquake rupture zone and in California, USA. The software allows determining the 3D location of the shoreline angle, which is a proxy for the estimation of permanent deformation rates. The method is based on linear interpolations to define the paleo platform and cliff on swath profiles. The shoreline angle is then located by intersecting these interpolations. The accuracy and precision of TerraceM® was tested by comparing its results with previous assessments, and through an experiment with students in a computer lab setting at the University of Potsdam. I combined the methods developed to analyze wave-built and wave-cut terraces to assess regional patterns of permanent deformation along the (2010) Maule earthquake rupture. Wave-built terraces are tied using 12 Infra Red Stimulated luminescence ages (IRSL ages) and shoreline angles in wave-cut terraces are estimated from 170 aligned swath profiles. The comparison of coseismic slip, interseismic coupling, and permanent deformation, leads to three areas of high permanent uplift, terrace warping, and sharp fault offsets. These three areas correlate with regions of high slip and low coupling, as well as with the spatial limit of at least eight historical megathrust ruptures (M8-9.5). I propose that the zones of upwarping at Arauco and Topocalma reflect changes in frictional properties of the megathrust, which result in discrete boundaries for the propagation of mega earthquakes. To explore the application of geomorphic markers and quantitative morphology in offshore areas I performed a local study of patterns of permanent deformation inferred from hitherto unrecognized drowned shorelines at the Arauco Bay, at the southern part of the (2010) Maule earthquake rupture zone. A multidisciplinary approach, including morphometry, sedimentology, paleontology, 3D morphoscopy, and a landscape Evolution Model is used to recognize, map, and assess local rates and patterns of permanent deformation in submarine environments. Permanent deformation patterns are then reproduced using elastic models to assess deformation rates of an active submarine splay fault defined as Santa Maria Fault System. The best fit suggests a reverse structure with a slip rate of 3.7 m/ka for the last 30 ka. The register of land level changes during the earthquake cycle at Santa Maria Island suggest that most of the deformation may be accrued through splay fault reactivation during mega earthquakes, like the (2010) Maule event. Considering a recurrence time of 150 to 200 years, as determined from historical and geological observations, slip between 0.3 and 0.7 m per event would be required to account for the 3.7 m/ka millennial slip rate. However, if the SMFS slips only every ~1000 years, representing a few megathrust earthquakes, then a slip of ~3.5 m per event would be required to account for the long- term rate. Such event would be equivalent to a magnitude ~6.7 earthquake capable to generate a local tsunami. The results of this thesis provide novel and fundamental information regarding the amount of permanent deformation accrued in the crust, and the mechanisms responsible for this accumulation at millennial time-scales along the M8.8 Maule earthquake (2010) rupture zone. Furthermore, the results of this thesis highlight the application of quantitative geomorphology and the use of repeatable methods to determine permanent deformation, improve the accuracy of marine terrace assessments, and estimates of vertical deformation rates in tectonically active coastal areas. This is vital information for adequate coastal-hazard assessments and to anticipate realistic earthquake and tsunami scenarios. N2 - Küstenregionen, die von schnellen Hebungsraten gekennzeichnet sind, werden häufig mit konvergierenden Plattengrenzen assoziiert, beispielsweise mit Subduktionszonen, die wiederholt von Mega-Erdbeben betroffen sind. Das Küstenrelief tektonisch aktiver Gebiete formt sich durch die Effekte von Meeresspiegelschwankungen und die heterogenen Muster der permanenten tektonischen Deformation, die im Zuge von mehreren Erdbebenzyklen entstand. Jedoch die Korrelation zwischen den Deformationsmustern von Erdbeben und der langfristig anhaltenden Segmentation der ‚Forearcs’ ist noch wenig erforscht, insbesondere in Chile. Darüber hinaus sind die Methoden zur Schätzung der permanenten Deformation geomorphologischer Marker, wie beispielsweise mariner Terrassen, lediglich qualitativ oder basieren nicht auf wiederholbaren Messungen. Dies steht im Kontrast zu der mittlerweile höheren Auflösung verfügbarer digitaler Geländemodelle, die z.B. mit LiDAR (Light Detection and Ranging) oder durch hochauflösende bathymetrische Studien gewonnen werden. Im Rahmen dieser Dissertation wird die permanente Deformation einer ganzheitlichen Betrachtung unterzogen, die von den zu Grunde liegenden Methoden zur Bestimmung der Deformationsraten bis hin zu den involvierten Prozessen bei deren Akkumulation reicht. Besonderes Augenmerk wird dabei auf zwei Aspekte gerichtet: Einerseits die Entwicklung von Methoden zur Messung permanenter Deformation anhand von marinen Terrassen, und andererseits der Vergleich zwischen permanenter Deformation und Deformationsmustern des seismischen Zyklus anhand unterschiedlicher räumlicher Ausmaße entlang der Bruchzone des M8.8 Maule (2010) Erdbebens entstanden. Es werden zwei Methoden zur Bestimmung der Deformationsraten von ’wave-built’ und ‘wave-cut’ Terrassen entwickelt. Ein archetypischer Beispiel einer ‘wave-built’ Terrasse wird auf der Insel Santa Maria untersucht. Durch die detaillierte Studie der Sedimentabfolge, werden wiederkehrende Ereignisse der Reaktivierung der Terrasse identifiziert, die anhand von Messungen an Kohlenstoffisotopen (C14- Datierung) von 11 Proben zeitlich eingegrenzt werden. Es wird eine Methode entwickelt, um solche Reaktivierungsmuster mit Meeresspiegelindikatoren in Verbindung zu bringen, wobei die relativen Meeresspiegelkurven mit einer Reihe von Hebungsraten korreliert werden. Die beste Korrelation zwischen Meeresspiegelschwankungen und dem stratigrafischen Muster wird unter Berücksichtigung einer Hebungsrate von 1.5 ± 0.3 m/ka erreicht. Unter Verwendung der Software Matlab® wird die grafische Benutzeroberfläche TerraceM® entwickelt. Diese neue Methode erlaubt die Bestimmung von Küstenwinkels in ‘wave-cut’ Terrassen in verschiedenen geomorphischen Szenarien. Zur Validierung der Methoden werden Regionen entlang der Bruchzone des Maule-Erdbebens und in Kalifornien ausgewählt, für die hochauflösende LiDAR-Daten der Topografie zur Verfügung stehen. Die Software ermöglicht es, den 3D Standort des Küstenwinkels zu bestimmen, der als Proxy für die Schätzung permanenter Deformationsraten fungiert. Dabei nutzt die Methode lineare Interpolation um die Paleo Plattform und die Klippen mit Swath Profilen zu definieren. Im Anschluss wird der Küstenwinkel durch die Überschneidung dieser Interpolationen lokalisiert. Die Genauigkeit und Robustheit von „TerraceM“ wird durch den Vergleich der Ergebnisse mit denen vorangegangener Untersuchungen überprüft. Um regionale Muster permanenter Deformationen entlang der (2010) Maule Bruchzone zu untersuchen werden die Methoden für die ‚wave-built’ und ‚wave-cut’ Terrassen kombiniert. ‘Wave-built’ Terrassen werden mittels 12 Infrarot-Optisch-Stimulierten Lumineszenz (IRSL) Proben datiert, während die Küstenwinkel der ‘wave-cut’ Terrassen anhand von 170 abgestimmten SWATH-Profilen geschätzt wurden. Durch den Vergleich von co-seismischem Versatz, interseismischer Kopplung und permanenter Deformation ergaben sich drei Gebiete mit hoher permanenter Erhebung, Terrassenkrümmung und abruptem, störungsbedingtem Versatz. Diese drei Gebiete korrelieren mit Regionen von hohem Versatz und niedriger Kopplung, sowie mit der räumlichen Begrenzung der Bruchzonen von mindestens acht historischen Mega-Erdbeben. Es wird argumentiert, dass die ansteigenden Zonen bei Arauco und Topocalma Änderungen der Reibungseigenschaften von Mega-Erdbeben widerspiegeln, was diskrete Grenzen für die Ausbreitung von Mega-Erdbeben zur Folge hat. Ein weiterer Beitrag dieser Dissertation ist die lokale Untersuchung permanenter Deformationsmuster von bislang unbekannten überflutete Küstenlinien in der Arauco-Bucht bei der Santa Maria Insel, die ebenfalls vom Maule Erdbeben betroffen wurde. Ein multidisziplinärer Ansatz wird verwendet, um lokale Muster permanenter Deformation in submarinen Umgebungen zu erkennen, abzubilden und zu untersuchen. Dabei kommen Morphometrie, Sedimentologie, Paläontologie, 3D Morphoskopie und ein Landschafts-Entwicklungs-Model zum Einsatz. Permanente Deformationsmuster werden anhand eines elastischen Models nachgebildet und bestimmen die Deformationsraten einer aktiven, submarinen Aussenstörung (‘splay fault’), die als Santa Maria Störungszone definiert wird und durch eine Versatzrate von 3.7 m/ka für die letzten 30 ka charakterisiert ist. Die Aufzeichnungen zu Veränderungen der Elevation der Erdoberfläche während des Santa Maria Erdbebenzyklus deuten darauf hin, dass der wesentliche Teil der Deformation auf die Reaktivierung einer ‘Splay Fault’ während Mega-Erdbeben (wie z.B. das Maule (2010) Erdbeben) zurückzuführen ist. Allerdings die Sismizität in geringer Tiefe, die während der letzten zehn Jahre vor dem Maule-Erdbeben registriert wurde, deutet auf vorübergehende Störungsaktivität in der interseismischen Phase hin. Die Ergebnisse dieser Dissertation liefern neuartige und fundamentale Daten bezüglich der Menge und Mechanismen der Akkumulierung permanenter Deformation in der Erdkruste über mehrere tausend Jahre hinweg in der Region des M8.8 Maule Erdbebens (2010). Die in dieser Dissertation präsentierten neuen Methoden zur Charakterisierung permanenter Deformation mithilfe von geomorpologischen Küstenmarkern bieten einen breiteren quantitativen Ansatz zur Interpretation aktiver Deformation dar und können somit zu einem besseren Verständnis der Geologie in tektonisch aktiven Küstengebieten beitragen. N2 - Las regiones costeras tectónicamente activas están generalmente asociadas con zonas de subducción, las cuales son recurrentemente afectadas por megaterremotos de gran magnitud. El relieve costero es modelado por el efecto combinado de variaciones eustáticas y patrones de alzamiento tectónico heterogéneos, los cuales son acumulados luego de varios ciclos de megaterremotos. Sin embargo, la correlación entre los patrones de deformación asociados a megaterremotos y la persistente segmentación de las zonas de antearco, especialmente en Chile, no han sido aún entendidos del todo. Por otra parte, los métodos normalmente usados para estimar deformación permanente y basados en marcadores geomorfológicos, como las terrazas marinas, han permanecido basados en aproximaciones cualitativas y no repetibles. Esta situación es contrastante con el rápido avance de modelos de elevación digital de alta resolución como Light Detection and Ranging (LiDAR) y batimetrías de última generación. A lo largo de esta tesis me enfoco en estudiar la deformación permanente desde un punto de vista holístico: Desde los métodos usados para medir deformación permanente, hasta el estudio de los procesos responsables de su acumulación en la corteza. Mi investigación se enfoca específicamente en dos aspectos: Desarrollar nuevos métodos para medir deformación permanente usando terrazas marinas y comparar la magnitud de la deformación permanente con diferentes escalas temporales de deformación registrada durante las distintas fases del ciclo sísmico a lo largo de la zona de ruptura del (M8.8) Terremoto Maule 2010. En esta tesis he desarrollado dos métodos para determinar tasas de deformación en terrazas marinas del tipo wave-built y wave-cut. Para el primero, me enfoco en estudiar un ejemplo arquetípico de terraza marina tipo wave-built en Isla Santa María, mapeando su estratigrafía en detalle y reconociendo patrones de eventos de reocupación datados mediante once edades de radiocarbono (14C). He desarrollado un método para vincular los patrones de reocupación con variaciones del nivel del mar mediante la iteración de curvas relativas del nivel del mar para un rango de tasas de alzamiento. El mejor ajuste entre nivel del mar relativo y los patrones estratigráficos señala una tasa de alzamiento de 1.5 ± 0.3 m/ka. El segundo método es un software de interfaz gráfica llamado TerraceM® y desarrollado usando Matlab®. Esta novedosa herramienta permite determinar el shoreline-angle en terrazas del tipo wave-cut para diferentes escenarios geomorfológicos. Para validar estos métodos he seleccionado zonas de prueba con disponibilidad de topografía LiDAR a lo largo de la zona de ruptura del Terremoto Maule (2010), en Chile, y en California, USA. TerraceM permite determinar la ubicación tridimensional del shoreline-angle, el cual es usado para calcular tasas de deformación permanente. El shoreline-angle es localizado mediante la intersección de interpolaciones lineales, las que son usadas para definir la paleo plataforma y el paleo acantilado en perfiles topográficos swath. La precisión y exactitud de las mediciones con TerraceM es testeada comprando los resultados con mapeos previos y mediante un experimento de respetabilidad con estudiantes en el laboratorio de computación de la Universidad de Potsdam. He combinado los métodos creados anteriormente, para analizar terrazas del tipo wave-cut y wave-built, con el objetivo de medir la deformación permanente acumulada a lo largo de la zona de ruptura del Terremoto Maule (2010). Las terrazas tipo wave-built fueron datadas usando doce edades de Luminiscencia Estimulada por Luz Infrarroja (IRSL), las terrazas wave-cut fueron estudiadas utilizando 170 perfiles swaths alineados. Mediante la comparación de deslizamiento co-sísmico, acople intersísmico y tasas de deformación permanente he detectado tres áreas de alto alzamiento tectónico, plegamiento de terrazas marinas y zonas desplazadas por fallas activas. Estas tres áreas coinciden con zonas de alto deslizamiento cosísmico y acople, y con el limite espacial de al menos ocho megaterremotos históricos (M8-9.5). Propongo que las zonas de plegamiento de terrazas marinas en Arauco y Topocalma reflejan cambios en fricción de la zona de interplaca, que da como resultado la formación de barreras discretas para la propagación de megaterremotos. Con el objetivo de explorar la aplicación de geomorfología cuantitativa y marcadores geomorfológicos en ambientes submarinos, he desarrollado un estudio local de para determinar tasas de alzamiento tectónico utilizando líneas de costa sumergidas en el Golfo de Arauco, en la parte sur de la zona de ruptura del Terremoto Maule (2010). Utilizo una metodología multidisciplinaria que incluye: morfometría, sedimentología, paleontología, morfoscopía 3D y un modelo de evolución del relieve, con el objetivo de reconocer, cartografiar, y medir tasas y patrones de deformación permanente en ambientes submarinos. Luego, se utilizó un modelo elástico para reproducir los patrones de deformación permanente de una falla ramificada (splay- fault) definida como Sistema de Falla Santa María. El mejor modelo sugiere una estructura inversa con una tasa de deslizamiento de 3.7 m/ka durante los últimos ~30 ka. El registro de cambios del nivel del terreno durante el ciclo sísmico en Isla Santa María sugiere que la mayor parte de la deformación es acumulada a través de la reactivación de fallas ramificadas durante megaterremotos como el Maule (2010). Si consideramos 150 a 200 años como tiempo de recurrencia de estos mega eventos, un deslizamiento de entre 0.3 y 0.7 metros por evento sería necesario para equilibrar la tasa de deslizamiento de 3.7 m/ka. Sin embargo, si la falla se deslizara cada ~1000 años, sugiriendo que solo algunos terremotos podrían reactivarla, un deslizamiento de ~3.5 metros por evento serían necesarios para equilibrar la tasa de deslizamiento. Tal evento sería equivalente a un terremoto magnitud ~6.7 que sería capaz de producir un tsunami local. Los resultados de esta tesis entregan información nueva y fundamental acerca de la cantidad de deformación permanente y los posibles mecanismos asociados a esta deformación a escala de miles de años a lo largo de la zona de ruptura del M8.8 Terremoto Maule (2010). Además, los resultados de esta tesis destacan la aplicación de métodos de geomorfología cuantitativa, incluyendo nuevas herramientas computacionales como TerraceM®, el cual ayudará a expandir el uso de la geomorfología cuantitativa y métodos repetibles, además de mejorar la precisión y exactitud de estimaciones de deformación permanente en zonas costeras. Esta información es imprescindible para una adecuada ponderación de riesgos geológicos en zonas costeras y para anticipar escenarios de terremotos y tsunamis realísticos. KW - marine terraces KW - geomorphology KW - earthquake KW - subduction zone KW - permanent deformation KW - shorelines KW - Erdbeben KW - Geomorphologie KW - marine Terrassen KW - permanente Verformung KW - Küstenlinien KW - Subduktionszone Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-102652 ER - TY - THES A1 - Nied, Manuela T1 - The role of soil moisture and weather patterns for flood occurrence and characteristics at the river basin scale T1 - Die Bedeutung von Mustern der Bodenfeuchte und des Wetters für das Auftreten und die Ausprägung von Hochwasserereignissen auf der Skala des Flusseinzugsgebietes N2 - Flood generation at the scale of large river basins is triggered by the interaction of the hydrological pre-conditions and the meteorological event conditions at different spatial and temporal scales. This interaction controls diverse flood generating processes and results in floods varying in magnitude and extent, duration as well as socio-economic consequences. For a process-based understanding of the underlying cause-effect relationships, systematic approaches are required. These approaches have to cover the complete causal flood chain, including the flood triggering meteorological event in combination with the hydrological (pre-)conditions in the catchment, runoff generation, flood routing, possible floodplain inundation and finally flood losses. In this thesis, a comprehensive probabilistic process-based understanding of the causes and effects of floods is advanced. The spatial and temporal dynamics of flood events as well as the geophysical processes involved in the causal flood chain are revealed and the systematic interconnections within the flood chain are deciphered by means of the classification of their associated causes and effects. This is achieved by investigating the role of the hydrological pre-conditions and the meteorological event conditions with respect to flood occurrence, flood processes and flood characteristics as well as their interconnections at the river basin scale. Broadening the knowledge about flood triggers, which up to now has been limited to linking large-scale meteorological conditions to flood occurrence, the influence of large-scale pre-event hydrological conditions on flood initiation is investigated. Using the Elbe River basin as an example, a classification of soil moisture, a key variable of pre-event conditions, is developed and a probabilistic link between patterns of soil moisture and flood occurrence is established. The soil moisture classification is applied to continuously simulated soil moisture data which is generated using the semi-distributed conceptual rainfall-runoff model SWIM. Applying successively a principal component analysis and a cluster analysis, days of similar soil moisture patterns are identified in the period November 1951 to October 2003. The investigation of flood triggers is complemented by including meteorological conditions described by a common weather pattern classification that represents the main modes of atmospheric state variability. The newly developed soil moisture classification thereby provides the basis to study the combined impact of hydrological pre-conditions and large-scale meteorological event conditions on flood occurrence at the river basin scale. A process-based understanding of flood generation and its associated probabilities is attained by classifying observed flood events into process-based flood types such as snowmelt floods or long-rain floods. Subsequently, the flood types are linked to the soil moisture and weather patterns. Further understanding of the processes is gained by modeling of the complete causal flood chain, incorporating a rainfall-runoff model, a 1D/2D hydrodynamic model and a flood loss model. A reshuffling approach based on weather patterns and the month of their occurrence is developed to generate synthetic data fields of meteorological conditions, which drive the model chain, in order to increase the flood sample size. From the large number of simulated flood events, the impact of hydro-meteorological conditions on various flood characteristics is detected through the analysis of conditional cumulative distribution functions and regression trees. The results show the existence of catchment-scale soil moisture patterns, which comprise of large-scale seasonal wetting and drying components as well as of smaller-scale variations related to spatially heterogeneous catchment processes. Soil moisture patterns frequently occurring before the onset of floods are identified. In winter, floods are initiated by catchment-wide high soil moisture, whereas in summer the flood-initiating soil moisture patterns are diverse and the soil moisture conditions are less stable in time. The combined study of both soil moisture and weather patterns shows that the flood favoring hydro-meteorological patterns as well as their interactions vary seasonally. In the analysis period, 18 % of the weather patterns only result in a flood in the case of preceding soil saturation. The classification of 82 past events into flood types reveals seasonally varying flood processes that can be linked to hydro-meteorological patterns. For instance, the highest flood potential for long-rain floods is associated with a weather pattern that is often detected in the presence of so-called ‘Vb’ cyclones. Rain-on-snow and snowmelt floods are associated with westerly and north-westerly wind directions. The flood characteristics vary among the flood types and can be reproduced by the applied model chain. In total, 5970 events are simulated. They reproduce the observed event characteristics between September 1957 and August 2002 and provide information on flood losses. A regression tree analysis relates the flood processes of the simulated events to the hydro-meteorological (pre-)event conditions and highlights the fact that flood magnitude is primarily controlled by the meteorological event, whereas flood extent is primarily controlled by the soil moisture conditions. Describing flood occurrence, processes and characteristics as a function of hydro-meteorological patterns, this thesis is part of a paradigm shift towards a process-based understanding of floods. The results highlight that soil moisture patterns as well as weather patterns are not only beneficial to a probabilistic conception of flood initiation but also provide information on the involved flood processes and the resulting flood characteristics. N2 - Hochwasserereignisse in großen Flusseinzugsgebieten entstehen durch das Zusammenwirken der hydrologischen Vorbedingungen und der meteorologischen Ereignisbedingungen. Das Zusammenwirken findet auf verschiedenen räumlichen und zeitlichen Skalen statt und steuert dabei unterschiedliche Prozesse der Hochwasserentstehung. Diese führen zu Hochwassern mit vielfältigen Eigenschaften, die sich unter anderem in maximalem Pegelstand, räumlicher Ausdehnung, Andauer und sozio-ökonomischen Folgen unterscheiden. Für ein prozessbasiertes Verständnis der zugrunde liegenden Zusammenhänge zwischen Ursache und Wirkung sind systematische Ansätze notwendig. Diese müssen die gesamte kausale Hochwasserprozesskette, von dem Hochwasser auslösenden meteorologischen Ereignis welches auf die hydrologischen Vorbedingungen im Einzugsgebiet trifft, über Abflussbildung, Wellenablauf und mögliche Überflutungen, bis hin zum Hochwasserschaden umfassen. Die vorliegende Arbeit hat das Ziel, zu einem umfassenden probabilistischen, prozessbasierten Verständnis der Ursachen und Auswirkungen von Hochwassern beizutragen. Neben der räumlichen und zeitlichen Dynamik von Hochwasserereignissen werden die an der kausalen Hochwasserprozesskette beteiligten geophysikalischen Prozesse analysiert. Systematische Zusammenhänge von Ursachen und Wirkungen innerhalb der Hochwasserprozesskette werden durch die Analyse von Klassifizierungen der hydrologischen Vorbedingungen und der meteorologischen Ereignisbedingungen offengelegt. Des Weiteren wird der Einfluss der klassifizierten Bedingungen bezüglich Hochwasserentstehung, Hochwasserprozessen und Hochwassereigenschaften sowie deren Verbindungen untereinander auf Ebene des Flusseinzugsgebiets quantifiziert. Das Wissen über hochwasserauslösende Bedingungen, welches bisher auf die Analyse von Großwetterlagen und deren Einfluss auf die Hochwasserentstehung beschränkt war, wird um den Einflussfaktor der großskaligen hydrologischen Vorbedingungen ergänzt. Am Beispiel des Einzugsgebiets der Elbe wird eine Klassifizierungsmethode für die Bodenfeuchte, einer bedeutenden hydrologischen Vorbedingung, entwickelt. Durch die Klassifizierung der Bodenfeuchte kann ein probabilistischer Zusammenhang zwischen räumlichen Bodenfeuchtemustern und dem Auftreten von Hochwasser hergestellt werden. Die Bodenfeuchteklassifizierung wird angewandt auf Bodenfeuchtedaten, die mit dem konzeptionellen Niederschlags-Abfluss-Modell SWIM durch kontinuierliche Simulation erzeugt werden. Eine Hauptkomponenten- und anschließende Clusteranalyse identifizieren dabei Tage ähnlicher räumlicher Bodenfeuchteverteilung im Zeitraum November 1951 bis Oktober 2003. Die meteorologischen Ereignisbedingungen werden durch eine gängige Wetterlagenklassifikation beschrieben, welche die charakteristischen atmosphärischen Zustände abbildet. Gemeinsam mit der neu entwickelten Bodenfeuchteklassifizierung bildet dies die Grundlage für die Untersuchung des kombinierten Einflusses der hydrologischen Vorbedingungen und der großräumigen meteorologischen Ereignisbedingungen auf die Entstehung von Hochwasser auf Flussgebietsskala. Das prozessorientierte Verständnis der Hochwasserentstehung und die damit einhergehenden Wahrscheinlichkeiten werden durch die Klassifizierung von vergangenen Hochwasserereignissen in prozessbasierte Hochwassertypen wie Schneeschmelzhochwasser oder Hochwasser auf Grund von langanhaltendendem Regen erzielt. Anschließend werden den Hochwassertypen die jeweils vorliegenden Bodenfeuchtemuster und Wetterlagen zugeordnet. Die Hochwasserprozesse werden zudem durch Simulation der gesamten kausalen Hochwasserprozesskette unter Einbeziehung eines Niederschlags-Abfluss-Modells, eines 1D/2D hydrodynamischen Modells sowie eines Hochwasserschadensmodells modelliert. Ein neu entwickelter Permutationsansatz basierend auf der Wetterlage und dem Monat ihres Auftretens generiert synthetische meteorologische Datensätze, welche der Modellkette als Eingangsdaten dienen, um eine repräsentative Anzahl von Hochwasserereignissen zu erzeugen. Durch die Vielzahl an simulierten Hochwasserereignissen kann der systematische Einfluss der hydro-meteorologischen Bedingungen auf verschiedene Hochwassermerkmale mit Hilfe von bedingten Verteilungsfunktionen und Regressionsbäumen gezeigt werden. Die Ergebnisse belegen die Existenz von Mustern der Bodenfeuchte auf Ebene von Flusseinzugsgebieten. Die Muster bilden sowohl großräumige jahreszeitliche Schwankungen der Bodenfeuchte als auch kleinskalige heterogene Prozesse im Einzugsgebiet ab. Häufig vor Hochwassern auftretende Bodenfeuchtemuster werden identifiziert. Im Winter wird Hochwasser vornehmlich durch eine flächendeckend hohe Bodenfeuchte eingeleitet. Im Sommer sind die Bodenfeuchtemuster zeitlich variabler und die mit Hochwasser in Verbindung stehenden Muster zahlreicher. Die Ergänzung der Bodenfeuchtemuster um die Wetterlagenklassifikation zeigt für die Hochwasserentstehung, dass die Beiträge der einzelnen hydro-meteorologischen Muster sowie deren Zusammenwirken jahreszeitlich variieren. Im Untersuchungszeitraum resultieren 18 % der Wetterlagen nur bei vorangehender Bodensättigung in einem Hochwasser. Die Zuordnung von 82 Hochwasserereignissen zu prozess-basierten Hochwassertypen zeigt ebenfalls saisonal unterschiedliche Prozesse auf, welche mit den hydro-meteorologischen Mustern in Verbindung gebracht werden können. Beispielsweise ist das größte Hochwasserpotenzial auf Grund von langanhaltendem Regen auf eine Wetterlage zurückzuführen, die häufig in Gegenwart von sogenannten "Vb" Zyklonen beobachtet wird. Regen-auf-Schnee und Schneeschmelz-Ereignisse werden im Zusammenhang mit westlichen und nordwestlichen Windrichtungen beobachtet. Die prozessbasierten Hochwassertypen und die resultierenden Hochwassereigenschaften können durch die angewandte Modellkette wiedergegeben werden. Insgesamt werden 5970 Ereignisse simuliert, welche die beobachteten Hochwassereigenschaften zwischen September 1957 und August 2002 reproduzieren. Zusätzlich können durch die Modellkette auch Aussagen über auftretende Hochwasserschäden gemacht werden. Eine Regressionsbaum-Analyse setzt die Hochwasserprozesse der simulierten Ereignisse in Beziehung zu den hydro-meteorologischen Bedingungen. Dabei wird deutlich, dass der Pegelstand primär durch die meteorologischen Ereignisbedingungen bestimmt wird, wohingegen die räumliche Ausdehnung des Hochwassers primär durch die Bodenfeuchtebedingungen beeinflusst wird. Die vorliegende Arbeit ist Teil eines Paradigmenwechsels hin zu einem prozessbasierten Hochwasserverständnis. Die Beschreibung von Hochwasserentstehung, Hochwasserprozessen und Hochwassereigenschaften in Abhängigkeit von hydro-meteorologischen Mustern zeigt, dass Bodenfeuchtemuster sowie Wetterlagen nicht nur zu einer probabilistischen Analyse der Hochwasserentstehung beitragen, sondern auch Aufschluss über die ablaufenden Hochwasserprozesse und die daraus resultierenden Hochwassereigenschaften geben. KW - floods KW - antecedent conditions KW - soil moisture patterns KW - weather patterns KW - flood types KW - Hochwasser KW - hydrologische Vorbedingungen KW - Muster der Bodenfeuchte KW - Wetterlagen KW - Hochwassertypen Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-94612 ER - TY - THES A1 - Falter, Daniela T1 - A novel approach for large-scale flood risk assessments T1 - Ein neuartiger Ansatz für großskalige Hochwasserrisikoanalysen BT - continuous and long-term simulation of the full flood risk chain BT - kontinuierliche Langzeitsimulation der gesamten Hochwasserrisikokette N2 - In the past, floods were basically managed by flood control mechanisms. The focus was set on the reduction of flood hazard. The potential consequences were of minor interest. Nowadays river flooding is increasingly seen from the risk perspective, including possible consequences. Moreover, the large-scale picture of flood risk became increasingly important for disaster management planning, national risk developments and the (re-) insurance industry. Therefore, it is widely accepted that risk-orientated flood management ap-proaches at the basin-scale are needed. However, large-scale flood risk assessment methods for areas of several 10,000 km² are still in early stages. Traditional flood risk assessments are performed reach wise, assuming constant probabilities for the entire reach or basin. This might be helpful on a local basis, but where large-scale patterns are important this approach is of limited use. Assuming a T-year flood (e.g. 100 years) for the entire river network is unrealistic and would lead to an overestimation of flood risk at the large scale. Due to the lack of damage data, additionally, the probability of peak discharge or rainfall is usually used as proxy for damage probability to derive flood risk. With a continuous and long term simulation of the entire flood risk chain, the spatial variability of probabilities could be consider and flood risk could be directly derived from damage data in a consistent way. The objective of this study is the development and application of a full flood risk chain, appropriate for the large scale and based on long term and continuous simulation. The novel approach of ‘derived flood risk based on continuous simulations’ is introduced, where the synthetic discharge time series is used as input into flood impact models and flood risk is directly derived from the resulting synthetic damage time series. The bottleneck at this scale is the hydrodynamic simu-lation. To find suitable hydrodynamic approaches for the large-scale a benchmark study with simplified 2D hydrodynamic models was performed. A raster-based approach with inertia formulation and a relatively high resolution of 100 m in combination with a fast 1D channel routing model was chosen. To investigate the suitability of the continuous simulation of a full flood risk chain for the large scale, all model parts were integrated into a new framework, the Regional Flood Model (RFM). RFM consists of the hydrological model SWIM, a 1D hydrodynamic river network model, a 2D raster based inundation model and the flood loss model FELMOps+r. Subsequently, the model chain was applied to the Elbe catchment, one of the largest catchments in Germany. For the proof-of-concept, a continuous simulation was per-formed for the period of 1990-2003. Results were evaluated / validated as far as possible with available observed data in this period. Although each model part introduced its own uncertainties, results and runtime were generally found to be adequate for the purpose of continuous simulation at the large catchment scale. Finally, RFM was applied to a meso-scale catchment in the east of Germany to firstly perform a flood risk assessment with the novel approach of ‘derived flood risk assessment based on continuous simulations’. Therefore, RFM was driven by long term synthetic meteorological input data generated by a weather generator. Thereby, a virtual time series of climate data of 100 x 100 years was generated and served as input to RFM providing subsequent 100 x 100 years of spatially consistent river discharge series, inundation patterns and damage values. On this basis, flood risk curves and expected annual damage could be derived directly from damage data, providing a large-scale picture of flood risk. In contrast to traditional flood risk analysis, where homogenous return periods are assumed for the entire basin, the presented approach provides a coherent large-scale picture of flood risk. The spatial variability of occurrence probability is respected. Additionally, data and methods are consistent. Catchment and floodplain processes are repre-sented in a holistic way. Antecedent catchment conditions are implicitly taken into account, as well as physical processes like storage effects, flood attenuation or channel–floodplain interactions and related damage influencing effects. Finally, the simulation of a virtual period of 100 x 100 years and consequently large data set on flood loss events enabled the calculation of flood risk directly from damage distributions. Problems associated with the transfer of probabilities in rainfall or peak runoff to probabilities in damage, as often used in traditional approaches, are bypassed. RFM and the ‘derived flood risk approach based on continuous simulations’ has the potential to provide flood risk statements for national planning, re-insurance aspects or other questions where spatially consistent, large-scale assessments are required. N2 - In der Vergangenheit standen bei der Betrachtung von Hochwasser insbesondere technische Schutzmaßnahmen und die Reduzierung der Hochwassergefahr im Mittelpunkt. Inzwischen wird Hochwasser zunehmend aus der Risikoperspektive betrachtet, d.h. neben der Gefährdung werden auch die Auswirkungen berücksichtigt. In diesem Zuge wurde auch die Notwendigkeit von großräumigen Hochwasserrisikoanalysen für das Management von Naturgefahren und als Planungsgrundlage auf nationaler Ebene sowie für die Rückversicherungsindustrie erkannt. Insbesondere durch die Einführung der Europäischen Hochwasserrisikomanagement Richtlinie sind risikoorientierte Managementpläne auf Einzugsgebietsebene obligatorisch. Allerdings befinden sich großräumige Hochwasserrisikoanalysen von mehreren 10.000 km², noch in den Anfängen. Traditionell werden Hochwasserrisikoanalysen für Gewässerabschnitte durchgeführt, wobei homogene Wiederkehrintervalle für das ganze Untersuchungsgebiet angenommen werden. Für lokale Fragestellungen ist diese Vorgehensweise sinnvoll, dies gilt allerdings nicht für die großräumige Analyse des Hochwasserrisikos. Die Annahme eines beispielsweise 100-jährigen Hochwassers im gesamten Gebiet ist unrealistisch und das Hochwasserrisiko würde dabei stark überschätzt werden. Aufgrund unzureichender Schadensdaten werden bei der Berechnung des Risikos oftmals die Wahrscheinlichkeiten des Niederschlags oder der Hochwasserscheitelabflüsse als Annäherung für die Wahrscheinlichkeit des Schadens angenommen. Durch eine kontinuierliche Langzeit-Simulation der gesamten Hochwasserrisikokette könnte sowohl die räumliche Verteilung der Wiederkehrintervalle berücksichtig werden, als auch das Hochwasserrisiko direkt aus Schadenszeitreihen abgeleitet werden. Die Zielsetzung dieser Arbeit ist die Entwicklung und Anwendung einer, für großräumige Gebiete geeigneten, kontinuierlichen Hochwasserrisikomodellkette. Damit wird ein neuartiger Ansatz des ‚abgeleiteten Hochwasserrisikos basierend auf kontinuierlichen Simulationen‘ eingeführt, der das Hochwasserrisiko direkt aus den simulierten Abflusszeitreichen und den daraus resultierenden Schadenzeitreihen ableitet. Die größte Herausforderung der Hochwasserrisikokette liegt bei den sehr rechenintensiven, detaillierten hydraulischen Simulationen. Um geeignete hydraulische Modelle für die großräumige Anwendung zu identifizieren, wurde eine Benchmark-Studie mit 2D Modellen unterschiedlicher Komplexität durchgeführt. Auf dieser Grundlage wurde für die Hochwasserrisikomodellkette ein rasterbasierter Ansatz mit einer relativ hohen Auflösung von 100 m in Kombination mit einem schnellen 1D Fließgewässermodell ausgewählt. Um die Eignung einer kontinuierlichen Simulation der gesamten Hochwasserrisikokette für großräumige Anwendungen zu prüfen, wurden zunächst alle Komponenten der Modellkette im ‚Regional Flood Model‘ (RFM) zusammengeführt. RFM besteht aus dem hydrologischen Modell SWIM, 1D und 2D hydraulischen Modellen, sowie dem Schadensmodell FELMOps+r. Nachfolgend wurde die Modellkette für das Elbe-Einzugsgebiet (>60.000 km²) angewendet. Es wurde eine kontinuierliche Simulation für den Zeitraum 1990-2003 durchgeführt. Die Ergebnisse wurden nach Möglichkeit mit vorhandenen Messdaten validiert/evaluiert. Auch wenn jede Komponente zu Unsicherheiten in den Ergebnissen der Modellkette beiträgt, sind die Ergebnisse und Rechenzeiten für die Anwendung auf großskaliger Einzugsgebietsebene als adäquat anzusehen. Schließlich wurde RFM in einem mesoskaligen Einzugsgebiet (6.000 km²) im Osten von Deutschland angewendet, um erstmals eine Hochwasserrisikoanalyse mit dem neuartigen Ansatz des ‚abgeleiteten Hochwasserrisikos basierend auf kontinuierlichen Simulationen‘ durchzuführen. Als Input wurde eine 100 x 100-jährige Zeitreihe meteorologischer Daten von einem Wettergenerator erzeugt. Die somit erzeugte 100 x 100-jährige konsistente Abflusszeitreihe, Überschwemmungsmuster und Schadenswerte dienten als Basis für die nachfolgende Erstellung von Hochwasserrisikokurven und Schadenserwartungswerten für das Untersuchungsgebiet. Diese ermöglichen eine großräumige Analyse des Hochwasserrisikos. Dabei wurde die räumliche Variation der Wahrscheinlichkeiten berücksichtigt. Die verwendeten Daten und Methoden waren außerdem im gesamten Untersuchungsgebiet einheitlich. Einzugsgebietsprozesse und Prozesse der Überschwemmungsflächen werden holistisch dargestellt. Die Vorbedingungen im Einzugsgebiet sowie physikalische Prozesse, wie Rückhalteeffekte, Überlagerungseffekte im Gewässernetz oder Interaktionen zwischen Fluss und Überschwemmungsflächen, werden implizit berücksichtigt. Die Simulation von 100 x 100 Jahren und die daraus resultierende große Anzahl an Schadensdaten ermöglichen die direkte Berechnung des Hochwasserrisikos aus Schadenswahrscheinlichkeiten. Die Probleme, die durch die Übertragung von Wahrscheinlichkeiten von Niederschlag oder Scheitelabfluss auf die Wahrscheinlichkeiten im Schaden resultieren, werden umgangen. RFM und der Ansatz des ‚abgeleiteten Hochwasserrisikos basierend auf kontinuierlichen Simulationen‘ haben das Potential Hochwasserrisikoaussagen für nationale Planungen, Rückversicherungsaspekte oder andere Fragestellungen, bei denen räumlich konsistente und großräumige Analysen nötig sind, zu treffen. KW - flood risk KW - hydraulic simulation KW - flood risk analysis KW - risk model chain KW - floodplain inundation KW - Hochwasserrisikoanalysen KW - Hochwasserrisikokette KW - Überschwemmungsflächen KW - kontinuierlicher Simulationsansatz Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-90239 ER - TY - THES A1 - Molkenthin, Christian T1 - Sensitivity analysis in seismic Hazard assessment using algorithmic differentiation Y1 - 2016 ER - TY - THES A1 - Niemeyer, Bastian T1 - Vegetation reconstruction and assessment of plant diversity at the treeline ecotone in northern Siberia Y1 - 2016 ER - TY - THES A1 - Rieckh, Helene T1 - Hydropedological analysis of erosion-affected soils in a hummocky ground-moraine landscape - interactions of water flow, dissolved carbon and particle transport, grop growth, and pedogenesis Y1 - 2016 ER - TY - THES A1 - Cattania, Camilla T1 - Improvement of aftershock models based on Coulomb stress changes and rate-and-state dependent friction T1 - Verbesserte Nachbebenmodelle durch Berücksichtigung von Coulombspannungsänderungen und Rate-State abhängiger Reibung N2 - Earthquake clustering has proven the most useful tool to forecast changes in seismicity rates in the short and medium term (hours to months), and efforts are currently being made to extend the scope of such models to operational earthquake forecasting. The overarching goal of the research presented in this thesis is to improve physics-based earthquake forecasts, with a focus on aftershock sequences. Physical models of triggered seismicity are based on the redistribution of stresses in the crust, coupled with the rate-and-state constitutive law proposed by Dieterich to calculate changes in seismicity rate. This type of models are known as Coulomb- rate and-state (CRS) models. In spite of the success of the Coulomb hypothesis, CRS models typically performed poorly in comparison to statistical ones, and they have been underepresented in the operational forecasting context. In this thesis, I address some of these issues, and in particular these questions: (1) How can we realistically model the uncertainties and heterogeneity of the mainshock stress field? (2) What is the effect of time dependent stresses in the postseismic phase on seismicity? I focus on two case studies from different tectonic settings: the Mw 9.0 Tohoku megathrust and the Mw 6.0 Parkfield strike slip earthquake. I study aleatoric uncertainties using a Monte Carlo method. I find that the existence of multiple receiver faults is the most important source of intrinsic stress heterogeneity, and CRS models perform better when this variability is taken into account. Epistemic uncertainties inherited from the slip models also have a significant impact on the forecast, and I find that an ensemble model based on several slip distributions outperforms most individual models. I address the role of postseismic stresses due to aseismic slip on the mainshock fault (afterslip) and to the redistribution of stresses by previous aftershocks (secondary triggering). I find that modeling secondary triggering improves model performance. The effect of afterslip is less clear, and difficult to assess for near-fault aftershocks due to the large uncertainties of the afterslip models. Off-fault events, on the other hand, are less sensitive to the details of the slip distribution: I find that following the Tohoku earthquake, afterslip promotes seismicity in the Fukushima region. To evaluate the performance of the improved CRS models in a pseudo-operational context, I submitted them for independent testing to a collaborative experiment carried out by CSEP for the 2010-2012 Canterbury sequence. Preliminary results indicate that physical models generally perform well compared to statistical ones, suggesting that CRS models may have a role to play in the future of operational forecasting. To facilitate efforts in this direction, and to enable future studies of earthquake triggering by time dependent processes, I have made the code open source. In the final part of this thesis I summarize the capabilities of the program and outline technical aspects regarding performance and parallelization strategies. N2 - Die örtliche und zeitlich Häufung von Erdbeben ist geeignet, um Änderungen in Seismizitätsraten auf kurzen bis mittleren Zeitskalen (Stunden bis Monate) zu prognostizieren. Kürzlich wurden vermehrt Anstrengungen unternommen, den Umfang solcher Modelle auf Operationelle Erdbebenvorhersage auszudehnen, welche die Veröffentlichung von Erdbebenwahrscheinlichkeiten beinhaltet mit dem Ziel, die Bevölkerung besser auf mögliche Erdbeben vorzubereiten. Das vorrangige Ziel dieser Dissertation ist die Verbesserung von kurz- und mittelfristiger Erdbebenprognose basierend auf physikalischen Modellen. Ich konzentriere mich hier auf Nachbebensequenzen. Physikalische Modelle, die getriggerte Seimizität erklären, basieren auf der Umverteilung von Spannungen in der Erdkruste. Berechnung der Coulomb Spannung können kombiniert werden mit dem konstituivem Gesetz von Dieterich, welches die Berechnung von Änderungen in der Seismizitätsrate ermöglicht. Diese Modelle sind als Coulomb-Rate-and-State (CRS) Modelle bekannt. Trotz der erfolgreichen Überprüfung der Coulomb-Hypothese, schneiden CRS-Modelle im Vergleich mit statistischen Modellen schlecht ab, und wurden deshalb bisher kaum im Kontext operationeller Erdbenbenvorhersage genutzt. In dieser Arbeit, gehe ich auf einige der auftretenden Probleme ein. Im Besonderen wende ich mich den folgenden Fragen zu: (1) Wie können wir die Unsicherheiten und die Heterogenität des Spannungsfeldes infolge des Hauptbebens realistisch modellieren? (2)Welche Auswirkungen haben zeitlich variable Spannungsänderungen in der postseismischen Phase? Ich konzentriere mich hierbei auf zwei Beispiele in unterschiedlichen tektonischen Regionen: die Aufschiebung des Mw9.0 Tohoku Erdbeben und die Blattverschiebung des Mw6.0 Parkfield Erdbeben. Ich untersuche aleotorische Unsicherheiten der Coulomb-Spannung durch Variabilität in der Orientierung der betroffenen Bruchflächen und durch Spannungsgradienten innerhalb von Modellzellen. Ich zeige, dass die Existenz der unterschiedlichen Bruchflächen die bedeutenste Quelle für intrinsiche Spannungheterogenität ist und das CRS-Modelle deutlich besser abschneiden, wenn diese Variabilität berücksichtigt wird. Die epistemischen Unsicherheiten aufgrund von unterschiedlichen Ergebnissen von Inversionen von Daten für die Verschiebung entlang der Bruchfläche haben ebenso erhebliche Auswirkungen auf die Vorhersage. Ich gehe dann auf die Rolle von postseismischen Spannung ein, insbesondere auf zwei Prozesse: aseismische Verschiebung entlang der Störungsfläche des Hauptbebens (Afterslip) und die Veränderung von Spannungen durch vorhergehende Nachbeben (sekundäres Triggern). Ich demonstriere, dass das Modellieren von sekundärem Triggern die Modellvorhersage in beiden Fallbeispielen verbessert. Die Einbeziehung von Afterslip verbessert die Qualität der Vorhersage nur für die Nachbebensequenz des Parkfield Erdbebens. Dagegen kann ich nachweisen, dass Afterslip infolge des Tohoku Bebens eine höhere Seismizität auf Abschiebungsflächen im Hangenden begünstigt. Die dargestellten Verbesserungen des CRS-Modells sind sehr vielversprechend im Kontext operationeller Erdbebenvorhersage, verlangen aber nach weiterer Überprüfung. Ich stelle die vorläufigen Ergebnisse eines gemeinschaftlichen Tests für die Erdbebenfolge von Canterbury 2010-2012 vor, welcher von CSEP durchgeführt wurde. Die physikalischen Modelle schneiden hier im Vergleich mit statistischen Modellen gut ab. Daher scheint eine Anwendung von CSR-Modellen, die Unsicherheiten und sekundäres Triggering berücksichtigen, in zukünftigen operationellen Erdbebenvorhersagen empfehlenswert. Um die Bemühungen in dieser Richtung zu unterstützen und weitere Studien zum Triggern von Erdbeben durch zeitabhängige Prozesse zu ermöglichen, habe ich meinen Open Source Code öffentlich zugänglich gemacht. Im letzen Teil dieser Arbeit fasse ich die Leistungsfähigkeit des Programms zusammen und skizziere die technischen Aspekte bezüglich der Effiziens und der Parallelisierung des Programmes. KW - earthquake forecasting KW - earthquake interaction KW - Coulomb stress KW - rate-state friction KW - Erdbebenvorhersage KW - Coulombspannung KW - Erdbebenwechselwirkung Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-87097 ER - TY - THES A1 - Ramisch, Arne T1 - Lake system development on the northern Tibetan Plateau during the last ~ 12 ka Y1 - 2015 ER - TY - THES A1 - Rach, Oliver T1 - Qualitative and quantitative estimations of hydrological changes in western Europe during abrupt climate shifts using lipid biomarker derived stable hydrogen isotope records Y1 - 2015 ER - TY - THES A1 - Mielke, Christian T1 - Multi- and Hyperspectral Spaceborne Remote Sensing for Mine Waste and Mineral Deposit Characterization, new Applications to the EnMAP and Sentinel-2 Missions Y1 - 2015 ER - TY - THES A1 - Aygül, Mesut T1 - Pre-collisional accretion and exhumation along the southern Laurasian active margin, Central Pontides, Turkey T1 - Prä-Kollisions Akkretion und Exhumierung entlang des aktiven südlichen Kontinentalrands Laurassisens, mittlere Pontiden, Türkei N2 - The Central Pontides is an accretionary-type orogenic area within the Alpine-Himalayan orogenic belt characterized by pre-collisional tectonic continental growth. The region comprises Mesozoic subduction-accretionary complexes and an accreted intra-oceanic arc that are sandwiched between the Laurasian active continental margin and Gondwana-derived the Kırşehir Block. The subduction-accretion complexes mainly consist of an Albian-Turonian accretionary wedge representing the Laurasian active continental margin. To the north, the wedge consists of slate/phyllite and metasandstone intercalation with recrystallized limestone, Na-amphibole-bearing metabasite (PT= 7–12 kbar and 400 ± 70 ºC) and tectonic slices of serpentinite representing accreted distal part of a large Lower Cretaceous submarine turbidite fan deposited on the Laurasian active continental margin that was subsequently accreted and metamorphosed. Raman spectra of carbonaceous material (RSCM) of the metapelitic rocks revealed that the metaflysch sequence consists of metamorphic packets with distinct peak metamorphic temperatures. The majority of the metapelites are low-temperature (ca. 330 °C) slates characterized by lack of differentiation of the graphite (G) and D2 defect bands. They possibly represent offscraped distal turbidites along the toe of the Albian accretionary wedge. The rest are phyllites that are characterized by slightly pronounced G band with D2 defect band occurring on its shoulder. Peak metamorphic temperatures of these phyllites are constrained to 370-385 °C. The phyllites are associated with a strip of incipient blueschist facies metabasites which are found as slivers within the offscraped distal turbidites. They possibly represent underplated continental metasediments together with oceanic crustal basalt along the basal décollement. Tectonic emplacement of the underplated rocks into the offscraped distal turbidites was possibly achieved by out-of-sequence thrusting causing tectonic thickening and uplift of the wedge. 40Ar/39Ar phengite ages from the phyllites are ca. 100 Ma, indicating Albian subduction and regional HP metamorphism. The accreted continental metasediments are underlain by HP/LT metamorphic rocks of oceanic origin along an extensional shear zone. The oceanic metamorphic sequence mainly comprises tectonically thickened deep-seated eclogite to blueschist facies metabasites and micaschists. In the studied area, metabasites are epidote-blueschists locally with garnet (PT= 17 ± 1 kbar and 500 ± 40 °C). Lawsonite-blueschists are exposed as blocks along the extensional shear zone (PT= 14 ± 2 kbar and 370–440 °C). They are possibly associated with low shear stress regime of the initial stage of convergence. Close to the shear zone, the footwall micaschists consist of quartz, phengite, paragonite, chlorite, rutile with syn-kinematic albite porphyroblast formed by pervasive shearing during exhumation. These types of micaschists are tourmaline-bearing and their retrograde nature suggests high-fluid flux along shear zones. Peak metamorphic mineral assemblages are partly preserved in the chloritoid-micaschist farther away from the shear zone representing the zero strain domains during exhumation. Three peak metamorphic assemblages are identified and their PT conditions are constrained by pseudosections produced by Theriak-Domino and by Raman spectra of carbonaceous material: 1) garnet-chloritoid-glaucophane with lawsonite pseudomorphs (P= 17.5 ± 1 kbar, T: 390-450 °C) 2) chloritoid with glaucophane pseudomorphs (P= 16-18 kbar, T: 475 ± 40 °C) and 3) relatively high-Mg chloritoid (17%) with jadeite pseudomorphs (P= 22-25 kbar; T: 440 ± 30 °C) in addition to phengite, paragonite, quartz, chlorite, rutile and apatite. The last mineral assemblage is interpreted as transformation of the chloritoid + glaucophane assemblage to chloritoid + jadeite paragenesis with increasing pressure. Absence of tourmaline suggests that the chloritoid-micaschist did not interact with B-rich fluids during zero strain exhumation. 40Ar/39Ar phengite age of a pervasively sheared footwall micaschist is constrained to 100.6 ± 1.3 Ma and that of a chloritoid-micaschist is constrained to 91.8 ± 1.8 Ma suggesting exhumation during on-going subduction with a southward younging of the basal accretion and the regional metamorphism. To the south, accretionary wedge consists of blueschist and greenschist facies metabasite, marble and volcanogenic metasediment intercalation. 40Ar/39Ar phengite dating reveals that this part of the wedge is of Middle Jurassic age partly overprinted during the Albian. Emplacement of the Middle Jurassic subduction-accretion complexes is possibly associated with obliquity of the Albian convergence. Peak metamorphic assemblages and PT estimates of the deep-seated oceanic metamorphic sequence suggest tectonic stacking within wedge with different depths of burial. Coupling and exhumation of the distinct metamorphic slices are controlled by decompression of the wedge possibly along a retreating slab. Structurally, decompression of the wedge is evident by an extensional shear zone and the footwall micaschists with syn-kinematic albite porphyroblasts. Post-kinematic garnets with increasing grossular content and pseudomorphing minerals within the chloritoid-micaschists also support decompression model without an extra heating. Thickening of subduction-accretionary complexes is attributed to i) significant amount of clastic sediment supply from the overriding continental domain and ii) deep level basal underplating by propagation of the décollement along a retreating slab. Underplating by basal décollement propagation and subsequent exhumation of the deep-seated subduction-accretion complexes are connected and controlled by slab rollback creating a necessary space for progressive basal accretion along the plate interface and extension of the wedge above for exhumation of the tectonically thickened metamorphic sequences. This might be the most common mechanism of the tectonic thickening and subsequent exhumation of deep-seated HP/LT subduction-accretion complexes. To the south, the Albian-Turonian accretionary wedge structurally overlies a low-grade volcanic arc sequence consisting of low-grade metavolcanic rocks and overlying metasedimentary succession is exposed north of the İzmir-Ankara-Erzincan suture (İAES), separating Laurasia from Gondwana-derived terranes. The metavolcanic rocks mainly consist of basaltic andesite/andesite and mafic cognate xenolith-bearing rhyolite with their pyroclastic equivalents, which are interbedded with recrystallized pelagic limestone and chert. The metavolcanic rocks are stratigraphically overlain by recrystallized micritic limestone with rare volcanogenic metaclastic rocks. Two groups can be identified based on trace and rare earth element characteristics. The first group consists of basaltic andesite/andesite (BA1) and rhyolite with abundant cognate gabbroic xenoliths. It is characterized by relative enrichment of LREE with respect to HREE. The rocks are enriched in fluid mobile LILE, and strongly depleted in Ti and P reflecting fractionation of Fe-Ti oxides and apatite, which are found in the mafic cognate xenoliths. Abundant cognate gabbroic xenoliths and identical trace and rare earth elements compositions suggest that rhyolites and basaltic andesites/andesites (BA1) are cogenetic and felsic rocks were derived from a common mafic parental magma by fractional crystallization and accumulation processes. The second group consists only of basaltic andesites (BA2) with flat REE pattern resembling island arc tholeiites. Although enriched in LILE, this group is not depleted in Ti or P. Geochemistry of the metavolcanic rocks indicates supra-subduction volcanism evidenced by depletion of HFSE and enrichment of LILE. The arc sequence is sandwiched between an Albian-Turonian subduction-accretionary complex representing the Laurasian active margin and an ophiolitic mélange. Absence of continent derived detritus in the arc sequence and its tectonic setting in a wide Cretaceous accretionary complex suggest that the Kösdağ Arc was intra-oceanic. This is in accordance with basaltic andesites (BA2) with island arc tholeiite REE pattern. Zircons from two metarhyolite samples give Late Cretaceous (93.8 ± 1.9 and 94.4 ± 1.9 Ma) U/Pb ages. Low-grade regional metamorphism of the intra-oceanic arc sequence is constrained 69.9 ± 0.4 Ma by 40Ar/39Ar dating on metamorphic muscovite from a metarhyolite indicating that the arc sequence became part of a wide Tethyan Cretaceous accretionary complex by the latest Cretaceous. The youngest 40Ar/39Ar phengite age from the overlying subduction-accretion complexes is 92 Ma confirming southward younging of an accretionary-type orogenic belt. Hence, the arc sequence represents an intra-oceanic paleo-arc that formed above the sinking Tethyan slab and finally accreted to Laurasian active continental margin. Abrupt non-collisional termination of arc volcanism was possibly associated with southward migration of the arc volcanism similar to the Izu-Bonin-Mariana arc system. The intra-oceanic Kösdağ Arc is coeval with the obducted supra-subduction ophiolites in NW Turkey suggesting that it represents part of the presumed but missing incipient intra-oceanic arc associated with the generation of the regional supra-subduction ophiolites. Remnants of a Late Cretaceous intra-oceanic paleo-arc and supra-subduction ophiolites can be traced eastward within the Alp-Himalayan orogenic belt. This reveals that Late Cretaceous intra-oceanic subduction occurred as connected event above the sinking Tethyan slab. It resulted as arc accretion to Laurasian active margin and supra-subduction ophiolite obduction on Gondwana-derived terranes. N2 - Die Mittelpontiden sind ein akkretionäres orogenes Gebiet innerhalb des Alpen-Himalaya Orogengürtels, das durch präkollisionales tektonisches kontinentales Wachstum gekennzeichnet ist. Die Region umfasst mesozoische subduktions-akkretions Komplexe und einen akkretierten intraozeanischen Bogen, die zwischen dem aktiven laurassischen Kontinentalrand und dem von Gondwana abgeleiteten Kırşehir Block eingeklemmt sind. Die Subduktions-Akkretionskomplexe bestehen hauptsächlich aus einem Alb-Turon Akkretionskeil, der den aktiven laurassischen Kontinentalrand repräsentiert. Im Norden besteht der Keil aus Schiefer/Phyllit und Metasandsteineinlagerungen mit rekristallisiertem Kalkstein, Na-Amphibole-tragendem Metabasit (PT= 7-12 kbar und 400 ± 70 ºC) und tektonischen Serpentinit-Einlagerungen, die einen distalen Teil eines großen submarinen Turbiditfächers der Unterkreide darstellen, der auf dem aktiven Kontinentalrand von Lauras abgelagert und anschließend akkretiert und metamorphisiert wurde. Ramanspektren von kohlenstoffhaltigem Material (RSCM) der metapelitischen Gesteine zeigen, dass die Metaflyschsequenz aus metamorphen Paketen mit ausgeprägten metamorphen Temperaturspitzen besteht. Die Mehrheit der Metapelite sind Niedertemperatur (ca. 330 °C) Schiefer, die sich durch eine mangelnde Differenzierung der Defektbänder Graphit (G) und D2 auszeichnen. Sie stellen möglicherweise abgetragene distale Turbidite entlang der Sohle des Akkretionskeils im Alb dar. Der Rest sind Phyllite, die sich durch ein leicht ausgeprägtes G-Band mit D2-Defektband an der Schulter auszeichnen. Die metamorphen Temperaturen dieser Phyllite sind auf 370-385 °C begrenzt. Die Phyllite sind mit Streifen von Metabasiten der beginnenden blauen Fazies assoziiert, die sich als Bänder innerhalb der abgetragenen distalen Turbidite befinden. Sie stellen möglicherweise unterschichtete kontinentale Metasedimente zusammen mit ozeanischem Krustenbasalt entlang des basalen Decollements dar. Die tektonische Einlagerung der unterschobenen Gesteine in die abgetragenen distalen Turbidite wurde möglicherweise durch "out-of-sequence thrusting" erreicht, was zu einer tektonischen Verdickung und Hebung des Keils führte. 40Ar/39Ar Phengit Alter von den Phylliten sind ca. 100 Ma, was auf Subduktion und regionale HP-Metamorphose während dem Alb hinweist. Die akkretierten kontinentalen Metasedimente werden von HP/LT-metamorphen Gesteinen ozeanischen Ursprungs entlang einer ausgedehnten Scherzone durchzogen. Die ozeanisch metamorphe Sequenz umfasst hauptsächlich tektonisch verdickte, tief sitzende Eklogite bis hin zu blauschieferfaziellen Metabasiten und Glimmerschiefern. Im Untersuchungsgebiet treten Metabasite als Epidot-Blauschiefer lokal mit Granat auf (PT= 17 ± 1 kbar und 500 ± 40 °C). Lawsonit-Blauschiefer treten als Blöcke entlang einer Extensionsscherzone auf (PT= 14 ± 2 kbar und 370-440 °C). Sie sind möglicherweise mit einem niedrigen Scherspannungsregime während der Anfangsphase der Konvergenz verbunden. In der Nähe der Scherzone bestehen die Glimmerschiefer aus Quarz, Phengit, Paragonit, Chlorit, Rutil und syn-kinematischen Albitporphyroblasten, die durch Scherung während der Exhumierung entstanden. Die Glimmerschiefer führen Turmalin und ihre retrograde Natur deutet auf hohen Fluidflux entlang der Scherzonen. Mineralvergesellschaftungen des metamorphen Maximums sind, weiter weg von der Scherzone, teilweise noch in den Chloritoid-Glimmerschiefern erhalten. Diese Domänen erfuhren während der Exhumierung keinen Strain. Drei metamorphe Vergesellschaftungen wurden identifiziert und ihre PT-Bedingungen durch Theriak-Domino Modellierung und Raman-Spektren von kohlenstoffhaltigem Material eingeschränkt: 1) Granat-Chloritoid-Glaukophan mit Lawsonit-Pseudomorphen (P= 17.5 ± 1 kbar, T: 390-450 °C); 2) Chloritoid mit Glaukophan-Pseudomorphen (P= 16-18 kbar, T: 475 ± 40 °C) und 3) relativ hoch-Mg-Chloritoid (17%) mit Jadeit-Pseudomorphen (P= 22-25 kbar; T: 440 ± 30 °C) zusätzlich zu Phengit, Paragonit, Quarz, Chlorit, Rutil und Apatit. Die letzte Mineralparagenese wird interpretiert als Transformation der Chloritoid + Glaukophan Vergesellschaftung zu Chloritoid + Jadeit Paragenese mit steigendem Druck. Das Fehlen von Turmalin deutet darauf hin, dass der Chloritoid-Glimmerschiefer während der strain-freien Exhumierung nicht mit B-reichen Fluiden reagiert hat. Das 40Ar/39Ar Phengitalter eines penetrativ geschieferten Glimmerschiefers ist auf 100,6 ± 1,3 Ma und das eines Chlorit-Glimmerschiefers auf 91,8 ± 1,8 Ma begrenzt, was auf eine Exhumierung während der laufenden Subduktion mit einer südlichen Verjüngung der Basalakkretion und des regionalen Metamorphismus hindeutet. Im Süden besteht der Akkretionskeil aus blauschiefer- und grünschieferfaziellen Metabasiten, Marmoren und vulkanogenen Metasedimenteinlagerungen. 40Ar/39Ar Phengit Datierung zeigt, dass dieser Teil des Keils aus dem Mittleren Jura stammt, der während des Albs teilweise überprägt wurde. Die Platznahe der Subduktions-/Akkretionskomplexe des Mittleren Jura ist möglicherweise mit einer schiefen Lage der Konvergenz im Alb verbunden. Peak metamorphe Mineralvergesellschaftungen und PT-Schätzungen der tiefliegenden ozeanischen metamorphen Sequenz deuten auf eine tektonische Stapelung im Akkretionskeil mit unterschiedlichen Grabentiefen hin. Die Kopplung und Exhumierung der einzelnen metamorphen Einheiten wird durch Dekompression des Keils gesteuert, möglicherweise entlang einer sich zurückziehenden Platte. Strukturell ist die Dekompression des Keils durch eine ausgedehnte Scherzone und die Glimmerschiefer der Basis mit syn-kinematischen Albitporphyroblasten erkennbar. Postkinematische Granate mit steigendem Grossulargehalt und pseudomorphe Mineralien innerhalb der Chloritoid-Glimmerschiefer unterstützen ein Dekompressionsmodell ohne zusätzliche Erwärmung. Die Verdickung der Subduktions-/Akkretionskomplexe wird zugeschrieben: i) einer signifikanten Menge an klastischer Sedimentzufuhr aus dem überschobenen kontinentalen Bereich und ii) tiefer basaler Unterschiebung durch Ausbreitung des Decollements entlang einer sich zurückziehenden Platte. Die Unterschiebung durch basale Decollementausbreitung und anschließende Exhumierung der tief liegenden Subduktions-Akkretionskomplexe wird durch Slab-Rollback gesteuert. Dadurch wird der notwendige Raum für eine progressive basale Akkretion entlang der Plattengrenze und der Verlängerung des überliegenden Keils für die Exhumierung der tektonisch verdickten metamorphen Sequenzen geschaffen. Dies könnte der wichtigste Mechanismus tektonischer Verdickung und anschließender Exhumierung von tief sitzenden HP/LT-Subduktions-Akkretionskomplexen sein. Im Süden liegt der Akkretionskeil des Alb-Turon strukturell über einer vulkanischen Bogensequenz aus niedriggradigen metavulkanischem Gestein und darüber liegender metasedimentärer Abfolge. Diese Metavulkanite, treten nördlich der İzmir-Ankara-Erzincan Sutur (İAES), welche Laurasia von der aus Gondwana stammenden Terranen trennt. Die metavulkanischen Gesteine bestehen hauptsächlich aus basaltischem Andesit/Andesit und Rhyolith mit mafischen Xenolithen sowie mit ihren pyroklastischen Äquivalenten, welche mit rekristallisiertem pelagischem Kalkstein und Hornstein durchsetzt sind. Die metavulkanischen Gesteine sind stratigraphisch überlagert von rekristallisiertem mikritischem Kalkstein mit seltenen vulkanischen metaklastischen Gesteinen. Zwei Gruppen können anhand von Spuren- und Seltenerden-gehalten identifiziert werden. Die erste Gruppe besteht aus basaltischem Andesit/Andesit (BA1) und Rhyolith mit zahlreichen gabbroiden Xenolithen. Sie ist durch eine relative Anreicherung von LREE gegenüber HREE gekennzeichnet. Die Gesteine sind mit fluidmobilen LILE angereichert und stark in Ti und P abgereichert, was die Fraktionierung von Fe-Ti-Oxiden und Apatit widerspiegelt, die in den mafischen Xenolithen zu finden sind. Reichlich gabbroide Xenolithe und identische Spuren- und Seltenerdelemente-Zusammensetzungen deuten darauf hin, dass Rhyolithe und basaltische Andesite/Andesite (BA1) kogenetisch sind und die felsischen Gesteine von einem gemeinsamen mafischen Magma durch fraktionierte Kristallisations- und Akkumulationsprozesse abgeleitet wurden. Die zweite Gruppe besteht nur aus basaltischen Andesiten (BA2) mit flachem REE-Muster, das an Inselbogen-Tholeiite erinnert. Obwohl angereichert mit LILE, ist diese Gruppe nicht Ti oder P verarmt. Die Geochemie der metavulkanischen Gesteine deutet auf Supra-Subduktionsvulkanismus hin, der durch den Abbau von HFSE und die Anreicherung von LILE belegt ist. Die Insel-Bogensequenz ist zwischen einem subduktions-akkretionären Komplex des Alb-Turon, der den laurassischen aktiven Kontinentalrandrand repräsentiert, und einer ophiolitischen Mélange eingeklemmt. Das Fehlen von kontinentalem Detritus in der Insel-Bogensequenz und seine tektonische Anordnung in einem breiten kreidezeitlichen Akkretionskomplex deuten darauf hin, dass der Kösdağ Arc intraozeanisch war. Dem entsprechen die basaltischen Andesiten (BA2) mit Inselbogen-Tholeiit-REE-Muster. Zirkon aus zwei Metarhyolithproben ergibt U/Pb-Alter der Spätkreide (93,8 ± 1,9 und 94,4 ± 1,9 Ma). Die niedriggradige regionale Metamorphose der intraozeanischen Bogensequenz ist durch 40Ar/39Ar Datierung von metamorphem Muskovit aus einem Metarhyolith auf 69,9 ± 0,4 Ma eingegrenzt, was darauf hindeutet, dass die Insel-Bogensequenz in der späten Kreide Teil des breiten Akkretionskomplexes der Tethys wurde. Das jüngste Phengitalter von 40Ar/39Ar aus den darüber liegenden Subduktions-Akkretionskomplexen ist 92 Ma, was die Verjüngung des akkretionären orogenen Gürtels gegen Süden bestätigt. Die Insel-Bogensequenz stellt somit einen intraozeanischen Paläobogen dar, der sich über der absinkenden Tethys-platte gebildet und schließlich an den aktiven laurassischen Kontinentalrand akkretiert hat. Der abrupte, nicht kollisionsbedingte Abbruch des Insel-Bogenvulkanismus war möglicherweise mit der südwärts Wanderung des Vulkanismus ähnlich dem Izu-Bonin-Mariana-Bogensystem verbunden. Der intraozeanische Kösdağ Bogen ist gleichaltrig zu den obduzierten Supra-Subduktionsophiolithen der Nordwesttürkei, was darauf hindeutet, dass er einen Teil des vermuteten, aber fehlenden beginnenden intraozeanischen Systems darstellt, das mit der Erzeugung der regionalen Supra-Subduktionsophiolithe verbunden ist. Überreste eines intraozeanischen Paläobogens und supra-subduzierter Ophiolithe der späten Kreide können innerhalb des orogenen Alpen-Himalaya-Gürtels nach Osten verfolgt werden. Dies zeigt, dass die intraozeanische Subduktion der Spätkreide als verbreitetes Ereignis über der absinkenden Platte der Tethys stattfand. Dieses führte zur Insel-Bogenakkretion am aktiven Kontinenntalrand Laurasirns und zur Supra-Subduktion Ophiolith-obduktion auf aus Gondwana stammenden Terranen. KW - Eurasian active margin KW - subduction-accretionary complexes KW - HP/LT metamorphism KW - Pontides KW - Eurasischer aktiver Kontinentalrand KW - subduktions-akkretions Komplexe KW - HP/LT-Metamorphose KW - Pontiden Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-416769 ER - TY - THES A1 - Priegnitz, Mike T1 - Development of geophysical methods to characterize methane hydrate reservoirs on a laboratory scale T1 - Entwicklung geophysikalischer Methoden zur Charakterisierung von Methanhydrat-Reservoiren im Labormaßstab N2 - Gashydrate sind kristalline Feststoffe bestehend aus Wasser und Gasmolekülen. Sie sind stabil bei erhöhten Drücken und niedrigen Temperaturen. Natürliche Hydratvorkommen treten daher an Kontinentalhängen, in Permafrostböden und in tiefen Seen sowie Binnenmeeren auf. Bei der Hydratbildung orientieren sich die Wassermoleküle neu und bilden sogenannte Käfigstrukturen, in die Gas eingelagert werden kann. Aufgrund des hohen Drucks bei der Hydratbildung können große Mengen an Gas in die Hydratstruktur eingebaut werden. Das Volumenverhältnis von Wasser zu Gas kann dabei bis zu 1:172 bei 0°C und Atmosphärendruck betragen. Natürliche Gashydrate enthalten hauptsächlich Methan. Da Methan sowohl ein Treibhausgas als auch ein Brenngas ist, stellen Gashydrate gleichermaßen eine potentielle Energieressource sowie eine mögliche Quelle für Treibhausgase dar. Diese Arbeit untersucht die physikalischen Eigenschaften von Methanhydrat gesättigten Sedimentproben im Labormaßstab. Dazu wurde ein großer Reservoirsimulator (LARS) mit einer eigens entwickelten elektrischen Widerstandstomographie ausgerüstet, die das erste Mal an hydratgesättigten Sedimentproben unter kontrollierten Temperatur-, Druck-, und Hydratsättigungsbedingungen im Labormaßstab angewendet wurde. Üblicherweise ist der Porenraum von (marinen) Sedimenten mit elektrisch gut leitendem Salzwasser gefüllt. Da Hydrate einen elektrischen Isolator darstellen, ergeben sich große Kontraste hinsichtlich der elektrischen Eigenschaften im Porenraum während der Hydratbildung und -zersetzung. Durch wiederholte Messungen während der Hydraterzeugung ist es möglich die räumliche Widerstandsverteilung in LARS aufzuzeichnen. Diese Daten bilden in der Folge die Grundlage für eine neue Auswerteroutine, welche die räumliche Widerstandsverteilung in die räumliche Verteilung der Hydratsättigung überführt. Dadurch ist es möglich, die sich ändernde Hydratsättigung sowohl räumlich als auch zeitlich hoch aufgelöst während der gesamten Hydraterzeugungsphase zu verfolgen. Diese Arbeit zeigt, dass die entwickelte Widerstandstomographie eine gute Datenqualität aufwies und selbst geringe Hydratsättigungen innerhalb der Sedimentprobe detektiert werden konnten. Bei der Umrechnung der Widerstandsverteilung in lokale Hydrat-Sättigungswerte wurden die besten Ergebnisse mit dem Archie-var-phi Ansatz erzielt, der die zunehmende Hydratphase dem Sedimentgerüst zuschreibt, was einer Abnahme der Porosität gleichkommt. Die Widerstandsmessungen zeigten weiterhin, dass die schnelle Hydraterzeugung im Labor zur Ausbildung von kleinen Hydratkristallen führte, die dazu neigten, zu rekristalliesieren. Es wurden weiterhin Hydrat-Abbauversuche durchgeführt, bei denen die Hydratphase über Druckerniedrigung in Anlehnung an den 2007/2008 Mallik Feldtest zersetzt wurde. Dabei konnte beobachtet werden, dass die Muster der Gas- undWasserflussraten im Labor zum Teil gut nachgebildet werden konnten, jedoch auch aufbaubedingte Abweichungen auftraten. In zwei weiteren Langzeitversuchen wurde die Realisierbarkeit und das Verhalten bei CO2-CH4-Hydrat Austauschversuchen in LARS untersucht. Das tomographische Messsystem wurde dabei genutzt um während der CH4 Hydrat Aufbauphase die Hydratverteilung innerhalb der Sedimentprobe zu überwachen. Im Zuge der anschließenden CO2-Injektion konnte mithilfe der Widerstandstomographie die sich ausbreitende CO2-Front überwacht und der Zeitpunkt des CO2 Durchbruchs identifiziert werden. N2 - Gas hydrates are crystalline solids composed of water and gas molecules. They are stable at elevated pressure and low temperatures. Therefore, natural gas hydrate deposits occur at continental margins, permafrost areas, deep lakes, and deep inland seas. During hydrate formation, the water molecules rearrange to form cavities which host gas molecules. Due to the high pressure during hydrate formation, significant amounts of gas can be stored in hydrate structures. The water-gas ratio hereby can reach up to 1:172 at 0°C and atmospheric pressure. Natural gas hydrates predominantly contain methane. Because methane constitutes both a fuel and a greenhouse gas, gas hydrates are a potential energy resource as well as a potential source for greenhouse gas. This study investigates the physical properties of methane hydrate bearing sediments on a laboratory scale. To do so, an electrical resistivity tomography (ERT) array was developed and mounted in a large reservoir simulator (LARS). For the first time, the ERT array was applied to hydrate saturated sediment samples under controlled temperature, pressure, and hydrate saturation conditions on a laboratory scale. Typically, the pore space of (marine) sediments is filled with electrically well conductive brine. Because hydrates constitute an electrical isolator, significant contrasts regarding the electrical properties of the pore space emerge during hydrate formation and dissociation. Frequent measurements during hydrate formation experiments permit the recordings of the spatial resistivity distribution inside LARS. Those data sets are used as input for a new data processing routine which transfers the spatial resistivity distribution into the spatial distribution of hydrate saturation. Thus, the changes of local hydrate saturation can be monitored with respect to space and time. This study shows that the developed tomography yielded good data quality and resolved even small amounts of hydrate saturation inside the sediment sample. The conversion algorithm transforming the spatial resistivity distribution into local hydrate saturation values yielded the best results using the Archie-var-phi relation. This approach considers the increasing hydrate phase as part of the sediment frame, metaphorically reducing the sample’s porosity. In addition, the tomographical measurements showed that fast lab based hydrate formation processes cause small crystallites to form which tend to recrystallize. Furthermore, hydrate dissociation experiments via depressurization were conducted in order to mimic the 2007/2008 Mallik field trial. It was observed that some patterns in gas and water flow could be reproduced, even though some setup related limitations arose. In two additional long-term experiments the feasibility and performance of CO2-CH4 hydrate exchange reactions were studied in LARS. The tomographical system was used to monitor the spatial hydrate distribution during the hydrate formation stage. During the subsequent CO2 injection, the tomographical array allowed to follow the CO2 migration front inside the sediment sample and helped to identify the CO2 breakthrough. KW - hydrate KW - Electrical Resistivity Tomography (ERT) KW - geophysics KW - Gashydrate KW - Elektrische Widerstandstomographie (ERT) KW - Geophysik Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-89321 ER - TY - THES A1 - Helpa, Vanessa T1 - Interplay between mineral reaction and deformation via structural defects T1 - Wechselwirkung von Mineralreaktion und Deformation durch Strukturdefekte N2 - This thesis contains three experimental studies addressing the interplay between deformation and the mineral reaction between natural calcite and magnesite. The solid-solid mineral reaction between the two carbonates causes the formation of a magnesio-calcite precursor layer and a dolomite reaction rim in every experiment at isostatic annealing and deformation conditions. CHAPTER 1 briefly introduces general aspects concerning mineral reactions in nature and diffusion pathways for mass transport. Moreover, results of previous laboratory studies on the influence of deformation on mineral reactions are summarized. In addition, the main goals of this study are pointed out. In CHAPTER 2, the reaction between calcite and magnesite single crystals is examined at isostatic annealing conditions. Time series performed at a fixed temperature revealed a diffusion-controlled dolomite rim growth. Two microstructural domains could be identified characterized by palisade-shaped dolomite grains growing into the magnesite and granular dolomite growing towards calcite. A model was provided for the dolomite rim growth based on the counter-diffusion of CaO and MgO. All reaction products exhibited a characteristic crystallographic relationship with respect to the calcite reactant. Moreover, kinetic parameters of the mineral reaction were determined out of a temperature series at a fixed time. The main goal of the isostatic test series was to gain information about the microstructure evolution, kinetic parameters, chemical composition and texture development of the reaction products. The results were used as a reference to quantify the influence of deformation on the mineral reaction. CHAPTER 3 deals with the influence of non-isostatic deformation on dolomite and magnesio-calcite layer production between calcite and magnesite single crystals. Deformation was achieved by triaxial compression and by torsion. Triaxial compression up to 38 MPa axial stress at a fixed time showed no significant influence of stress and strain on dolomite formation. Time series conducted at a fixed stress yield no change in growth rates for dolomite and magnesio-calcite at low strains. Slightly larger magnesio-calcite growth rates were observed at strains above >0.1. High strains at similar stresses were caused by the activation of additional glide systems in the calcite single crystal and more mobile dislocations in the magnesio-calcite grains, providing fast diffusion pathways. In torsion experiments a gradual decrease in dolomite and magnesio-calcite layer thickness was observed at a critical shear strain. During deformation, crystallographic orientations of reaction products rearranged with respect to the external framework. A direct effect of the mineral reaction on deformation could not be recognized due to the relatively small reaction product widths. In CHAPTER 4, the influence of starting material microfabrics and the presence of water on the reaction kinetics was evaluated. In these experimental series polycrystalline material was in contact with single crystals or two polycrystalline materials were used as reactants. Isostatic annealing resulted in different dolomite and magnesio-calcite layer thicknesses, depending on starting material microfabrics. The reaction progress at the magnesite interface was faster with smaller magnesite grain size, because grain boundaries provided fast pathways for diffusion and multiple nucleation sites for dolomite formation. Deformation by triaxial compression and torsion yield lower dolomite rim thicknesses compared to annealed samples for the same time. This was caused by grain coarsening of polycrystalline magnesite during deformation. In contrast, magnesio-calcite layers tended to be larger during deformation, which triggered enhanced diffusion along grain boundaries. The presence of excess water had no significant influence on the reaction kinetics, at least if the reactants were single crystals. In CHAPTER 5 general conclusions about the interplay between deformation and the mineral reaction in the carbonate system are presented. Finally, CHAPTER 6 highlights possible future work in the carbonate system based on the results of this study. N2 - Die vorliegende Arbeit umfasst drei experimentelle Studien die sich mit der Wechselwirkung von Mineralreaktion und Deformation zwischen natürlichem Kalzit und Magnesit befassen. Die fest-fest Mineralreaktion zwischen den Karbonaten führt zur Entstehung einer Magnesio-Kalzit Vorläuferphase und zur Entstehung eines Dolomit Reaktionssaumes in allen durchge-führten Experimenten sowohl unter isostatischen Bedingungen als auch während der Defor-mation. Im ersten Kapitel werden die grundlegenden Aspekte hinsichtlich Mineralreaktionen in der Natur und Diffusion angeführt. Weiterhin werden Resultate von vorherigen Studien bezüglich des Einflusses von Deformation auf Mineralreaktionen zusammengefasst. Außerdem werden die Hauptziele dieser Studie aufgezeigt. Im zweiten Kapitel wird die Mineralreaktion zwischen Kalzit und Magnesit Einkristallen unter isostatischen Bedingungen untersucht. Zeitserien bei einer festgelegten Temperatur zeigten ein diffusionskontrolliertes Dolomitsaumwachstum. Die Mikrostruktur des Dolomitsaums ist durch zwei unterschiedliche Bereiche charakterisiert. Palisadenartige Dolomitkörner wachsen in den Magnesit und granulare Dolomitkörner wachsen in Richtung des Kalzits. Ein Model für das Dolomitsaumwachstum wurde angewandt, basierend auf der Gegendiffusion von CaO und MgO. Alle Reaktionsprodukte zeigten eine bestimmte kristallographische Beziehung in Hinblick auf den Kalzitreaktanten. Des Weiteren wurden die kinetischen Parameter für die Mineralreaktion durch Temperaturserien bei einer festen Versuchslaufzeit bestimmt. Das Hauptziel der isostatischen Testserie bestand darin Informationen über die mikrostrukturelle Entwicklung, die kinetischen Parameter, die chemische Zusammensetzung und die texturelle Entwicklung der Reaktionsprodukte zu gewinnen. Die Resultate dienten als Referenz um den Einfluss der Deformation auf die Mineralreaktion zu quantifizieren. Kapitel drei befasst sich mit dem Effekt von nicht-isostatischer Deformation auf die Bildungen von Dolomit und Magnesio-Kalzit zwischen Kalzit und Magnesit Einkristallen. Deformation wurde entweder durch triaxiale Kompression oder durch Torsion erreicht. Triaxiale Kompression bis zu 38 MPa axialer Spannung bei festgelegter Zeit zeigte keinen signifikanten Einfluss von Spannung und Verformung auf die Dolomitproduktion. Eine Zeitserie bei ähnlichen axialen Spannungen und geringen Verformungen resultierten in vergleichbaren Wachstumsraten für Dolomit und Magnesio-Kalzit wie unter isostatischen Bedingungen. Geringfügig schnellere Wachstumsraten für den Magnesio-Kalzit traten in Experimenten auf bei denen die Verformung größer als 0.1 war. Hohe Verformungen bei ähnlichen Spannungen wurde durch die Aktivierung zusätzlicher Gleitsysteme im Kalzit Einkristall und mobile Versetzungen im Magnesio-Kalzit erreicht, welche schnelle Wege für Diffusion bereitstellen. In Torsionsexperimenten wurde eine graduelle Abnahme der Dolomitsaumdicke und des Magnesio-Kalzits beim Überschreiten einer kritischen Scherverformung festgestellt. Während der Deformation kam es zu einer Umorientierung der kristallographischen Achsen von Dolomit und Magnesio-Kalzit hinsichtlich des externen Bezugsystems. Ein direkter Effekt der Mineralreaktion auf die Deformation konnte auf Grund der relative geringen Reaktionsproduktdi-cke nicht gesehen werden. Im vierten Kapitel wurden der Korngrößeneinfluss des Ausgangsmaterials sowie die Anwesenheit von Wasser auf die Reaktionskinetik getestet. In dieser Testserie wurde polykristallines Material in Kontakt zu Einkristallen gebracht oder zwei polykristalline Materialien wurden als Reaktanten benutzt. Isostatisches Ausheizen resultierte in verschiedenen Dolomitsaum- und Magnesio-Kalzitdicken in Abhängigkeit der Korngröße der Reaktanten. Bei kleinen Korngrößen des Magnesits war der Reaktionsfortschritt erhöht, da Korngrenzen Wege für schelle Diffusion boten und viele Nukleationskeime erlaubten. Im Gegensatz zu isostatischen Bedingungen führten triaxiale Kompression und Torsion zu geringen Dolomitsaumdi-cken. Die Ursache hierfür war auftretendes Kornwachstum im polykristallinen Magnesit während der Deformation. Für den Magnesio-Kalzit wurde ein beschleunigtes Wachstum während der Deformation festgestellt, da der Massentransport entlang von Korngrenzen begünstigt wurde. Die Reaktionskinetik zwischen zwei Einkristallen wurde durch die Anwesenheit von zusätzlichem Wasser nicht signifikant beeinflusst. Das fünfte Kapitel enthält die generellen Schlussfolgerungen die für die Wechselwirkung von Mineralreaktion und Deformation im Karbonatsystem getroffen werden konnten. Basierend auf den Resultaten dieser Studie zeigt Kapitel sechs abschließend auf, welche Möglichkeiten es für zukünftige Arbeiten im Karbonatsystem gibt. KW - carbonates KW - deformation KW - mineral reaction KW - Karbonate KW - Deformation KW - Mineralreaktion Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-90332 ER - TY - THES A1 - Obu, Jaroslav T1 - Effect of mass wasting on soil organic carbon storage and coastal erosion in permafrost environments T1 - Einfluss von Hangbewegungen auf Kohlenstoffspeicher und Küstenerosion in Permafrostgebieten N2 - Accelerated permafrost thaw under the warming Arctic climate can have a significant impact on Arctic landscapes. Areas underlain by permafrost store high amounts of soil organic carbon (SOC). Permafrost disturbances may contribute to increased release of carbon dioxide and methane to the atmosphere. Coastal erosion, amplified through a decrease in Arctic sea-ice extent, may also mobilise SOC from permafrost. Large expanses of permafrost affected land are characterised by intense mass-wasting processes such as solifluction, active-layer detachments and retrogressive thaw slumping. Our aim is to assess the influence of mass wasting on SOC storage and coastal erosion. We studied SOC storage on Herschel Island by analysing active-layer and permafrost samples, and compared non-disturbed sites to those characterised by mass wasting. Mass-wasting sites showed decreased SOC storage and material compaction, whereas sites characterised by material accumulation showed increased storage. The SOC storage on Herschel Island is also significantly correlated to catenary position and other slope characteristics. We estimated SOC storage on Herschel Island to be 34.8 kg C m-2. This is comparable to similar environments in northwest Canada and Alaska. Coastal erosion was analysed using high resolution digital elevation models (DEMs). Two LIDAR scanning of the Yukon Coast were done in 2012 and 2013. Two DEMs with 1 m horizontal resolution were generated and used to analyse elevation changes along the coast. The results indicate considerable spatial variability in short-term coastline erosion and progradation. The high variability was related to the presence of mass-wasting processes. Erosion and deposition extremes were recorded where the retrogressive thaw slump (RTS) activity was most pronounced. Released sediment can be transported by longshore drift and affects not only the coastal processes in situ but also along adjacent coasts. We also calculated volumetric coastal erosion for Herschel Island by comparing a stereo-photogrammetrically derived DEM from 2004 with LIDAR DEMs. We compared this volumetric erosion to planimetric erosion, which was based on coastlines digitised from satellite imagery. We found a complex relationship between planimetric and volumetric coastal erosion, which we attribute to frequent occurrence of mass-wasting processes along the coasts. Our results suggest that volumetric erosion corresponds better with environmental forcing and is more suitable for the estimation of organic carbon fluxes than planimetric erosion. Mass wasting can decrease SOC storage by several mechanisms. Increased aeration following disturbance may increase microbial activity, which accelerates organic matter decomposition. New hydrological conditions that follow the mass wasting event can cause leaching of freshly exposed material. Organic rich material can also be directly removed into the sea or into a lake. On the other hand the accumulation of mobilised material can result in increased SOC storage. Mass-wasting related accumulations of mobilised material can significantly impact coastal erosion in situ or along the adjacent coast by longshore drift. Therefore, the coastline movement observations cannot completely resolve the actual sediment loss due to these temporary accumulations. The predicted increase of mass-wasting activity in the course of Arctic warming may increase SOC mobilisation and coastal erosion induced carbon fluxes. N2 - Die Erwärmung des arktischen Klimas beschleunigt das Tauen des Permafrosts. Das kann einen erheblichen Einfluss auf arktische Landschaften haben. Permafrostböden speichern große Mengen Kohlenstoff, der aufgrund von Umlagerungsprozessen wie beispielsweise Massenversatz mobilisiert und als Kohlendioxid oder Methan freigesetzt werden kann. Der Kohlenstoff im Boden kann auch durch Küstenerosion mobilisiert werden, die durch den Rückgang des arktischen Meereises und höhere Meerwassertemperaturen künftig stark zunehmen wird. Große Teile der arktischen Permafrostgebiete werden durch intensive Massenversatzprozesse wie Solifluktion, Rutschungen in der saisonalen Auftauschicht (active layer detachments) und rückschreitende Taurutschungen (retrogressive thaw slumps) gekennzeichnet. Unser Ziel ist es, den Einfluss dieser Massenbewegungen auf Kohlenstoffspeicher und Küstenerosion zu bewerten. Wir haben Auftauschicht- und Permafrostproben untersucht, um den Kohlenstoffspeicher für Herschel Island zu ermitteln. Wir verglichen ungestörtes Terrain mit durch Massenversatz gekennzeichnetem Terrain. Letzteres zeigte verringerte Bodenkohlenstoffspeicher und Materialverdichtung. Durch Akkumulation organischen Materials gekennzeichnete Lagen zeigten eine Zunahme des Kohlenstoffpeichers. Der Bodenkohlenstoffspeicher auf Herschel Insel korreliert außerdem deutlich mit der Lage in Senken und der Hangneigung. Der Kohlenstoffspeicher im Boden von Herschel Island ist etwa so hoch wie in vergleichbaren Landschaften im Nordwesten Kanadas und Alaskas. Wir schätzen ihn auf 34,8 kg C m-2. Wir ermittelten Küstenerosionsraten mit hochauflösenden Digitalen Geländemodellen (DGM). Dazu benutzten wir zwei LIDAR Aufnahmen der Yukon Küste aus den Jahren 2012 und 2013. Zwei DGMs mit 1 m horizontaler Auflösung wurden erzeugt und verwendet, um die Höhenunterschiede entlang der Küste zu analysieren. Wir fanden eine erhebliche räumliche Variabilität in kurzfristigen Küstenerosionsraten. Wir erklärten die hohe Variabilität mit der räumlichen Heterogenität des Vorkommens von Massenversatzprozessen. Besonders die sogenannten retrogressive thaw slumps bewirkten extrem hohe Erosionsraten an einigen Küstenabschnitten. Durch Strandversetzung wird erodiertes Sediment die Küste entlang transportiert und beeinflusst so nicht nur lokale Küstenprozesse, sondern auch benachbarte Küstenabschnitte. Um die längerfristige Entwicklung der Küste einschätzen zu können, haben wir volumetrische Erosionsraten aus dem Vergleich eines stereophotogrammetrisch abgeleiteten DGM aus dem Jahr 2004 mit unseren LIDAR DGMs errechnet. Planimetrische Erosionsraten wurden anhand von digitalisierten Küstenlinien aus Satellitenbildern berechnet. So konnte auch der Einfluss von volumetrischer und planimetrischer Erosion eingeschätzt werden. Wir fanden komplexe Zusammenhänge zwischen planimetrischer und volumetrischer Küstenerosion, die wir auf das gehäufte Auftreten von Massenversatzprozessen entlang einiger Küstenabschnitte zurückführen. Die Ergebnisse legen nahe, dass volumetrische Erosionsraten den beobachteten Umweltbedingungen besser entsprechen als planimetrische Erosionsraten und somit besser geeignet sind zur Einschätzung organischer Kohlenstoffflüsse in Permafrostgebieten entlang der arktischen Küsten. Massenversatz kann den Kohlenstoffspeicher im Boden mit verschiedenen Mechanismen verringern. Erhöhte Belüftung kann die mikrobielle Aktivität erhöhen, die den Abbau organischer Materie beschleunigt. Durch veränderte hydrologische Bedingungen nach Massenversatz können Stoffe aus der Auftauschicht ausgewaschen werden. Organikreiche Stoffe können auch direkt ins einem Meer in einen See erodiert werden. Andererseits kann die Akkumulation von umgelagertem Material zu einer Erhöhung des Bodenkohlenstoffspeichers an anderer Stelle führen. Die Akkumulation von Material aus Massenversatz kann erhebliche Auswirkungen auf die lokale Küstenerosion, durch Strandversetzung aber auch auf angrenzende Küstenabschnitte haben. Allein durch Beobachtung der Veränderung von Küstenlinien kann aufgrund solcher temporärer Ansammlungen die Einschätzung des tatsächlichen Sedimentverlustes pro Küstenabschnitt nicht präzise wiedergegeben werden. Im Zuge der prognostizierten Erwärmung der Arktis und der damit verbundene Zunahme von Massenversatzprozessen und Küstenerosion wird sich die Mobilisierung von Bodenkohlenstoff aus Permafrost zukünftig beschleunigen. KW - mass wasting KW - soil organic carbon KW - coastal erosion KW - Massenversatzprozesse KW - Kohlenstoffspeicher KW - Küstenerosion Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-90599 ER - TY - THES A1 - Bora, Sanjay Singh T1 - Regionally adaptable ground-motion Prediction Equations (GMPEs) for seismic hazard analysis T1 - Regional anpassungsfähige Bodenbewegungsmodelle (engl. ground motion prediction equations, GMPEs) für Erdbebengefährdungsabschätzungen N2 - Adjustment of empirically derived ground motion prediction equations (GMPEs), from a data- rich region/site where they have been derived to a data-poor region/site, is one of the major challenges associated with the current practice of seismic hazard analysis. Due to the fre- quent use in engineering design practices the GMPEs are often derived for response spectral ordinates (e.g., spectral acceleration) of a single degree of freedom (SDOF) oscillator. The functional forms of such GMPEs are based upon the concepts borrowed from the Fourier spectral representation of ground motion. This assumption regarding the validity of Fourier spectral concepts in the response spectral domain can lead to consequences which cannot be explained physically. In this thesis, firstly results from an investigation that explores the relationship between Fourier and response spectra, and implications of this relationship on the adjustment issues of GMPEs, are presented. The relationship between the Fourier and response spectra is explored by using random vibration theory (RVT), a framework that has been extensively used in earthquake engineering, for instance within the stochastic simulation framework and in the site response analysis. For a 5% damped SDOF oscillator the RVT perspective of response spectra reveals that no one-to-one correspondence exists between Fourier and response spectral ordinates except in a limited range (i.e., below the peak of the response spectra) of oscillator frequencies. The high oscillator frequency response spectral ordinates are dominated by the contributions from the Fourier spectral ordinates that correspond to the frequencies well below a selected oscillator frequency. The peak ground acceleration (PGA) is found to be related with the integral over the entire Fourier spectrum of ground motion which is in contrast to the popularly held perception that PGA is a high-frequency phenomenon of ground motion. This thesis presents a new perspective for developing a response spectral GMPE that takes the relationship between Fourier and response spectra into account. Essentially, this frame- work involves a two-step method for deriving a response spectral GMPE: in the first step two empirical models for the FAS and for a predetermined estimate of duration of ground motion are derived, in the next step, predictions from the two models are combined within the same RVT framework to obtain the response spectral ordinates. In addition to that, a stochastic model based scheme for extrapolating the individual acceleration spectra beyond the useable frequency limits is also presented. To that end, recorded acceleration traces were inverted to obtain the stochastic model parameters that allow making consistent extrapola- tion in individual (acceleration) Fourier spectra. Moreover an empirical model, for a dura- tion measure that is consistent within the RVT framework, is derived. As a next step, an oscillator-frequency-dependent empirical duration model is derived that allows obtaining the most reliable estimates of response spectral ordinates. The framework of deriving the response spectral GMPE presented herein becomes a self-adjusting model with the inclusion of stress parameter (∆σ) and kappa (κ0) as the predictor variables in the two empirical models. The entire analysis of developing the response spectral GMPE is performed on recently compiled RESORCE-2012 database that contains recordings made from Europe, the Mediterranean and the Middle East. The presented GMPE for response spectral ordinates should be considered valid in the magnitude range of 4 ≤ MW ≤ 7.6 at distances ≤ 200 km. N2 - Die Anpassung von empirisch gewonnenen Bodenbewegungsmodellen (engl. ground motion prediction equations, GMPEs) einer Region an andere Zielregionen bzw. -standorte, für die es nur eine schlechte oder ungenügende Datengrundlage gibt, ist eine der großen Herausforderungen in der seismischen Gefährdungsanalyse. Die abgeleiteten GMPEs werden oft zur Vorhersage von sogenannten Antwortspektren (AS) erstellt. Diese Zielgröße ist von besonderem Interesse für ingenieurtechnische Berechnungen zur erdbebensicheren Auslegung von Gebäuden. Die gewählten funktionalen Formen von GMPEs sind oft der physikalisch basierten Darstellung von seismischer Bodenbewegung als Fourier-Amplituden-Spektren (FAS) entlehnt. Die Annahme der Gültigkeit dieser Konzepte für die Modellierung von Antwortspektren kann jedoch zu Phänomenen führen, die physikalisch nicht erklärbar sind. Im ersten Teil der vorliegenden Doktorarbeit wird deshalb die Beziehung zwischen FAS und AS unter dem Aspekt möglicher Implikationen für die Anpassung von GMPEs an Zielstand-orte näher erforscht und die gefundenen Ergebnisse präsentiert. Die Beziehung zwischen FAS und AS wurde mit Hilfe der `random-vibration-theory' (RVT) untersucht. RVT ist ein Modellierungansatz, der extensiv im Erbebeningenieurwesen benutzt wird, wie zum Beispiel bei der Stochastischen Methode zur Simulation von Bodenbewegungen oder bei standortspezifischen Analysen zur Reaktion von Gebäuden auf seismische Bodenerschütterungen. Die RVT basierten Analysen für das Antwortverhalten eines 5 % gedämpften Einmassenschwingers auf Bodenunruhe zeigen, dass es keine eins zu eins Übertragbarkeit zwischen FAS und AS gibt, abgesehen von einem eingeschränkten Bereich von Eigenfrequenzen des Massenschwingers, deren Antwortspektralwerte unterhalb des charakteristischen Maximums des AS liegen. Für hohe Eigenfrequenzen werden die Werte des AS von Beiträgen des FAS dominiert, deren Frequenzbereich weit tiefer liegt als die betrachtete Eigenfrequenz im AS. Es konnte beobachtet werden, dass die maximale Bodenbeschleunigung (engl. Peak Ground Acceleration, PGA) mit dem Integral über das gesamte, die Bodenunruhe beschreibende FAS in Verbindung steht. Dies steht im Kontrast zur weit verbreiteten Auffassung, PGA sei ein Hochfrequenzphänomen. In dieser Doktorarbeit wird eine neue Perspektive für die Erstellung von GMPEs für die Vorhersage von Antwortspektren (AS-GMPEs) vorgestellt, die die Beziehung zwischen FAS und AS mit einbezieht. Dieser Ansatz beinhaltet eine Zweischrittmethode, um ein AS-GMPE zu erstellen: Im ersten Schritt werden zwei empirische Modelle abgeleitet, welche der Vorhersage des FAS und der Dauer der seismischen Bodenbewegung dienen; im zweiten Schritt werden diese Vorhersagen der beiden empirischen Modelle (FAS, Dauer der Bodenbewegung) unter Benutzung der RVT miteinander kombiniert, um Antwortspektralwerte abzuleiten. Darüber hinaus wird ein Verfahren vorgestellt, das es ermöglicht, erhobene FAS Daten (individuelle Beschleunigungsspektren) über den nutzbaren Frequenzbereich der Daten hinaus zu extrapolieren. Das Verfahren basiert auf der Stochasitischen Methode zur Simulation von Bodenbewegungen. Zu diesem Zweck wurden gemessene Zeitreihen von Erdbeben induzierter Bodenbeschleunigung invertiert, um die Modellparameter der Stochastischen Methode zu bestimmen, was eine konsistente Extrapolation des jeweiligen individuellen (Beschleunigungs-) FAS erlaubt. Ferner wurde ein empirisches Modell für ein Maß der Dauer von seismischer Bodenbewegung entwickelt, das konsistent innerhalb des Ansatzes der RVT ist. In einem nächsten Schritt wurde ein empirisches Modell für die Dauer von seismischer Bodenunruhe entwickelt, das von der Eigenfrequenz des Einmassenschwingers abhängig ist. Dies erlaubt eine möglichst zuverlässige Vorhersage von Antwortspektralwerten. Das hier präsentierte Verfahren zur Ableitung von AS-GMPEs ermöglicht eine einfache Anpassung des AS-GMPE an einen Zielstandort, da es den Stressparameter (∆σ) und den Parameter Kappa (κ0) als Prädiktoren in den beiden empirischen Modellen mit einschließt. Die gesamte Analyse und Ableitung des AS-GMPE basiert auf erhobenen Daten der RESORCE-2012 Datenbank, die Messungen aus Europa, dem Mittelmeerraum und dem Mittleren Osten enthält. Das präsentierte AS-GMPE ist für den Magnituenbereich 4 ≤ MW ≤ 7.6 und für Distanzen ≤ 200 km gültig. KW - seismic hazard KW - response spectra KW - Ground Motion Prediction Equation (GMPE) KW - Fourier spectra KW - duration KW - Erdbebengefährdungsabschätzungen KW - Bodenbewegungsmodelle KW - Antwortspektren KW - Fourier-Spektren KW - Dauer der Bodenbewegung Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-88806 ER - TY - THES A1 - Wang, Rong T1 - Late quaternary climate and environmental variability inferred from terrigenous sediment records in China and the North Pacific/Bering Sea Y1 - 2015 ER - TY - THES A1 - Mulyukova, Elvira T1 - Stability of the large low shear velocity provinces T1 - Stabilität der basalen Melange im untersten Erdmantel BT - numerical modeling of thermochemical mantle convection BT - numerische Modellierung thermochemischer Mantelkonvektion N2 - We study segregation of the subducted oceanic crust (OC) at the core mantle boundary and its ability to accumulate and form large thermochemical piles (such as the seismically observed Large Low Shear Velocity Provinces - LLSVPs). Our high-resolution numerical simulations suggest that the longevity of LLSVPs for up to three billion years, and possibly longer, can be ensured by a balance in the rate of segregation of high-density OC-material to the CMB, and the rate of its entrainment away from the CMB by mantle upwellings. For a range of parameters tested in this study, a large-scale compositional anomaly forms at the CMB, similar in shape and size to the LLSVPs. Neutrally buoyant thermochemical piles formed by mechanical stirring - where thermally induced negative density anomaly is balanced by the presence of a fraction of dense anomalous material - best resemble the geometry of LLSVPs. Such neutrally buoyant piles tend to emerge and survive for at least 3Gyr in simulations with quite different parameters. We conclude that for a plausible range of values of density anomaly of OC material in the lower mantle - it is likely that it segregates to the CMB, gets mechanically mixed with the ambient material, and forms neutrally buoyant large scale compositional anomalies similar in shape to the LLSVPs. We have developed an efficient FEM code with dynamically adaptive time and space resolution, and marker-in-cell methodology. This enabled us to model thermochemical mantle convection at realistically high convective vigor, strong thermally induced viscosity variations, and long term evolution of compositional fields. N2 - Es wird allgemein akzeptiert, dass Mantelkonvektion - das langsame Fließen der Mantelgesteine, das mutmaßlich ein wichtiger Antrieb der Plattentektonik ist - von Dichteunterschieden verursacht wird, die thermischen aber auch chemischen Ursprungs sind. Es fehlen aber Kenntnisse über die thermochemischen Prozesse im Erdinneren, vor allem wegen Schwierigkeiten bei der Beobachtung. Eines der zuverlässigsten Resultate von tomographischen Beobachtungen ist die Existenz von zwei Haufen einer basalen Melange (BAM, LLSVP auf Englisch), die sich auf gegenüber liegenden Seiten in 3000 km Tiefe am Boden des Mantels unter Afrika bzw dem Pazifik befinden. Die niedrige Scherwellengeschwindigkeit in der BAM scheint eine thermischen (heiß) sowie einen chemischen (Material mit hoher Dichte) Ursprung zu haben. Aufgrund von plattentektonischen Rekonstruktionen wird angenommen dass die BAM langlebig und stabil sind, und dass sie von überwiegend von ihren Rändern hochquellenden Manteldiapiren beprobt werden. Die Hauptfrage meiner Doktorarbeit ist, wie solche großen chemischen Speicher wie die BAM sich bilden und über hunderte von Millionen Jahren überleben können, ohne dass sie von der Mantelkonvektion zerstört werden. Was sind die physikalischen Eigenschaften des BAM-Materials, z.B. Dichte, die dazu beitragen? Ich benutze numerische Modellierung um zu erforschen, wie sich eine dichte Bodenschicht bildet und wie die Mantelkonvektion Material daraus mitnimmt. Mein Ziel ist, die langfristige thermochemische Entwicklung des Erdmantels zu verstehen, insbesondere die Rolle der Dichteheterogeintäten Viskosität im untersten Mantel. KW - earth's mantle KW - thermochemical mantle convection KW - numerical modeling KW - Erdmantel KW - thermochemischer Mantelkonvektion KW - numerische Modellierung Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-82228 ER - TY - THES A1 - Karo, Nihad Majeed T1 - Metamorphic evolution of the Northern Zagros Suture Zone (NZSZ) Y1 - 2015 ER - TY - THES A1 - Schröder, Sarah T1 - Modelling surface evolution coupled with tectonics T1 - Modellierung von Oberflächenprozessen gekoppelt mit Tektonik BT - A case study for the Pamir BT - Eine Fallstudie zum Pamir N2 - This study presents the development of 1D and 2D Surface Evolution Codes (SECs) and their coupling to any lithospheric-scale (thermo-)mechanical code with a quadrilateral structured surface mesh. Both SECs involve diffusion as approach for hillslope processes and the stream power law to reflect riverbed incision. The 1D SEC settles sediment that was produced by fluvial incision in the appropriate minimum, while the supply-limited 2D SEC DANSER uses a fast filling algorithm to model sedimantation. It is based on a cellular automaton. A slope-dependent factor in the sediment flux extends the diffusion equation to nonlinear diffusion. The discharge accumulation is achieved with the D8-algorithm and an improved drainage accumulation routine. Lateral incision enhances the incision's modelling. Following empirical laws, it incises channels of several cells width. The coupling method enables different temporal and spatial resolutions of the SEC and the thermo-mechanical code. It transfers vertical as well as horizontal displacements to the surface model. A weighted smoothing of the 3D surface displacements is implemented. The smoothed displacement vectors transmit the deformation by bilinear interpolation to the surface model. These interpolation methods ensure mass conservation in both directions and prevent the two surfaces from drifting apart. The presented applications refer to the evolution of the Pamir orogen. A calibration of DANSER's parameters with geomorphological data and a DEM as initial topography highlights the advantage of lateral incision. Preserving the channel width and reflecting incision peaks in narrow channels, this closes the huge gap between current orogen-scale incision models and observed topographies. River capturing models in a system of fault-bounded block rotations reaffirm the importance of the lateral incision routine for capturing events with channel initiation. The models show a low probability of river capturings with large deflection angles. While the probability of river capturing is directly depending on the uplift rate, the erodibility inside of a dip-slip fault speeds up headward erosion along the fault: The model's capturing speed increases within a fault. Coupling DANSER with the thermo-mechanical code SLIM 3D emphasizes the versatility of the SEC. While DANSER has minor influence on the lithospheric evolution of an indenter model, the brittle surface deformation is strongly affected by its sedimentation, widening a basin in between two forming orogens and also the southern part of the southern orogen to south, east and west. N2 - Im Rahmen dieser Studie werden 1D und 2D Erosionsmodelle im Gebirgsmaßstab implementiert und mit Modellen für tektonische Deformation gekoppelt. Die Kopplungsmethode erlaubt unterschiedlich räumliche und zeitliche Auflösungen im tektonischen und im Erosionsmodell. Es werden sowohl vertikale als auch horizontale Bewegungen zwischen den Modellen transferiert. Darüber hinaus enthält die Kopplungsmethode ein Glättungsverfahren, um eventuelle Instabilitäten des tektonischen Modelles zu kompensieren. Beide Erosionsmodelle beziehen Hangerosion, Flusseinschneidung und Sedimentation ein. Der 1D Code nutzt Hack's Law, um die Wassermengen zu berechnen. Er garantiert Massenerhaltung, indem er Sedimente in Senken speichert. Das 2D Erosionsmodell DANSER basiert auf einem zellulären Automaten. Ein zusätzlicher steigungsabhängiger Faktor erweitert lineare zu nichtlinearer Diffusion. Wassermengen werden mit Hilfe des D8-Algorithmus und einer veränderten Form von O'Callaghans (1984) Algorithmus akkumuliert. Laterale Einschneidung, berechnet durch einen neuen Verteilungs-Algorithmus, verbessert die Modellierung von Flusssystemen. Flüsse sind dabei repräsentiert durch eine unterschiedliche Anzahl an Zellen orthogonal zur Fließrichtung. Ihre Breite wird nach empirischen Gesetzen ermittelt. Die präsentierten Anwendungen dienen der Studie des Pamirgebirges. Zunächst werden die Modellparameter anhand von Einschneidungs- und Erosionsraten sowie Sedimentdurchflüssen kalibriert. Ein digitales Höhenmodell dient als Anfangstopographie und zur Extraktion von Flussprofilen. Laterale Einschneidung zeigt eine deutliche Verbesserung zu bisher vorhandenen Modellen. Sie ermöglicht die Erhaltung der Flussbreite und zeigt hohe Einschneidungsraten in engen Flusspassagen. Modelle von Flussanzapfungen in einem System paralleler Verwerfungen bestätigen die Wichtigkeit von lateraler Einschneidung für Flussanzapfungsmodelle, die Hangerosion einbeziehen. Während die Modelle eine geringe Wahrscheinlichkeit von Flussanzapfungen mit hohem Ablenkungswinkel zeigen, belegen sie auch, dass deren (allgemeine) Wahrscheinlichkeit direkt von der Hebungsrate der Verwerfungen abhängt. Die Erodibilität beschleunigt lediglich die Geschwindigkeit von Flussanzapfungen. Ein Modell, das die Codes SLIM 3D und DANSER koppelt, dokumentiert die vielseitige Verwendbarkeit des neuen Codes: Es zeigt einen geringen Einfluss von Oberflächenprozessen auf die Lithosphärendeformation, während die Sedimentationsroutine erheblich auf spröde Oberflächendeformationen einwirkt. Das Modell legt nahe, dass Sedimentation ein zwischen zwei entstehenden Gebirgen gelegenes Becken weitet. Außerdem weitet sich der südlich von der interkontinentalen Kollisionszone gelegene Teil des Gebirge-Models ebenfalls durch Sedimentation. KW - erosion KW - coupling KW - SEC KW - surface evolution KW - thermo-mechanics KW - surface processes KW - DANSER KW - Pamir KW - Tien-Shan KW - Tian-Shan KW - tectonics KW - modelling KW - modeling KW - numerical model KW - simulation KW - surface KW - fluvial incision KW - hillslope diffusion KW - finite differences KW - finite elements KW - Eulerian grid KW - DANSER KW - DANSER KW - Erosion KW - Modellierung KW - Tektonik KW - Koppelung KW - SEC KW - numerische Modellierung KW - Oberflächenprozesse KW - Pamir KW - Tien-Shan KW - Tian-Shan KW - Tiefendeformation KW - Software KW - Simulation KW - Oberfläche KW - fluviale Einschneidung KW - Hangerosion KW - finite Differenzen KW - finite Elemente KW - Eulerische Gitter Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-90385 ER - TY - THES A1 - Kormann, Christoph Martin T1 - Regional climate change effects on hydroclimatic conditions in the Alpine region BT - detection and attribution Y1 - 2015 ER -