TY - JOUR A1 - Dorsch, Matti A1 - Jeffery, C. Simon A1 - Irrgang, Andreas A1 - Woolf, Vincent A1 - Heber, Ulrich T1 - EC 22536-5304 BT - a lead-rich and metal-poor long-period binary JF - Astronomy and astrophysics : an international weekly journal N2 - Helium-burning hot subdwarf stars of spectral types O and B (sdO/B) are thought to be produced through various types of binary interactions. The helium-rich hot subdwarf star EC 22536-5304 was recently found to be extremely enriched in lead. Here, we show that EC 22536-5304 is a binary star with a metal-poor subdwarf F-type (sdF) companion. We performed a detailed analysis of high-resolution SALT/HRS and VLT/UVES spectra, deriving metal abundances for the hot subdwarf, as well as atmospheric parameters for both components. Because we consider the contribution of the sdF star, the derived lead abundance for the sdOB, + 6.3 +/- 0.3 dex relative to solar, is even higher than previously thought. We derive T-eff = 6210 +/- 70 K, log g = 4.64 +/- 0.10, [FE/H] = - 1.95 +/- 0.04, and [alpha/Fe] = + 0.40 +/- 0.04 for the sdF component. Radial velocity variations, although poorly sampled at present, indicate that the binary system has a long orbital period of about 457 days. This suggests that the system was likely formed through stable Roche lobe overflow (RLOF). A kinematic analysis shows that EC 22536-5304 is on an eccentric orbit around the Galactic centre. This, as well as the low metallicity and strong alpha enhancement of the sdF-type companion, indicate that EC 22536-5304 is part of the Galactic halo or metal-weak thick disc. As the first long-period hot subdwarf binary at [FE/H] less than or similar to- 1, EC 22536-5304 may help to constrain the RLOF mechanism for mass transfer from low-mass, low-metallicity red giant branch (RGB) stars to main-sequence companions. KW - stars: abundances KW - stars: chemically peculiar KW - subdwarfs KW - stars: individual: EC 22536-5304 KW - binaries: spectroscopic Y1 - 2021 U6 - https://doi.org/10.1051/0004-6361/202141381 SN - 1432-0746 VL - 653 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Andersson, Edvin K. W. A1 - Sångeland, Christofer A1 - Berggren, Elin A1 - Johansson, Fredrik O. L. A1 - Kühn, Danilo A1 - Lindblad, Andreas A1 - Mindemark, Jonas A1 - Hahlin, Maria T1 - Early-stage decomposition of solid polymer electrolytes in Li-metal batteries JF - Journal of materials chemistry : A, Materials for energy and sustainability N2 - Development of functional and stable solid polymer electrolytes (SPEs) for battery applications is an important step towards both safer batteries and for the realization of lithium-based or anode-less batteries. The interface between the lithium and the solid polymer electrolyte is one of the bottlenecks, where severe degradation is expected. Here, the stability of three different SPEs - poly(ethylene oxide) (PEO), poly(epsilon-caprolactone) (PCL) and poly(trimethylene carbonate) (PTMC) - together with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt, is investigated after they have been exposed to lithium metal under UHV conditions. Degradation compounds, e.g. Li-O-R, LiF and LixSyOz, are identified for all SPEs using soft X-ray photoelectron spectroscopy. A competing degradation between polymer and salt is identified in the outermost surface region (<7 nm), and is dependent on the polymer host. PTMC:LiTFSI shows the most severe decomposition of both polymer and salt followed by PCL:LiTFSI and PEO:LiTFSI. In addition, the movement of lithium species through the decomposed interface shows large variation depending on the polymer electrolyte system. Y1 - 2021 U6 - https://doi.org/10.1039/d1ta05015j SN - 2050-7488 SN - 2050-7496 VL - 9 IS - 39 SP - 22462 EP - 22471 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Wang, Wei A1 - Cherstvy, Andrey G. A1 - Kantz, Holger A1 - Metzler, Ralf A1 - Sokolov, Igor M. T1 - Time averaging and emerging nonergodicity upon resetting of fractional Brownian motion and heterogeneous diffusion processes JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - How different are the results of constant-rate resetting of anomalous-diffusion processes in terms of their ensemble-averaged versus time-averaged mean-squared displacements (MSDs versus TAMSDs) and how does stochastic resetting impact nonergodicity? We examine, both analytically and by simulations, the implications of resetting on the MSD- and TAMSD-based spreading dynamics of particles executing fractional Brownian motion (FBM) with a long-time memory, heterogeneous diffusion processes (HDPs) with a power-law space-dependent diffusivity D(x) = D0|x|gamma and their "combined" process of HDP-FBM. We find, inter alia, that the resetting dynamics of originally ergodic FBM for superdiffusive Hurst exponents develops disparities in scaling and magnitudes of the MSDs and mean TAMSDs indicating weak ergodicity breaking. For subdiffusive HDPs we also quantify the nonequivalence of the MSD and TAMSD and observe a new trimodal form of the probability density function. For reset FBM, HDPs and HDP-FBM we compute analytically and verify by simulations the short-time MSD and TAMSD asymptotes and long-time plateaus reminiscent of those for processes under confinement. We show that certain characteristics of these reset processes are functionally similar despite a different stochastic nature of their nonreset variants. Importantly, we discover nonmonotonicity of the ergodicitybreaking parameter EB as a function of the resetting rate r. For all reset processes studied we unveil a pronounced resetting-induced nonergodicity with a maximum of EB at intermediate r and EB similar to(1/r )-decay at large r. Alongside the emerging MSD-versus-TAMSD disparity, this r-dependence of EB can be an experimentally testable prediction. We conclude by discussing some implications to experimental systems featuring resetting dynamics. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevE.104.024105 SN - 2470-0045 SN - 2470-0053 VL - 104 IS - 2 PB - American Institute of Physics CY - Woodbury, NY ER - TY - JOUR A1 - Kurilovich, Aleksandr A. A1 - Mantsevich, Vladimir N. A1 - Mardoukhi, Yousof A1 - Stevenson, Keith J. A1 - Chechkin, Aleksei A1 - Palyulin, Vladimir V. T1 - Non-Markovian diffusion of excitons in layered perovskites and transition metal dichalcogenides JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - The diffusion of excitons in perovskites and transition metal dichalcogenides shows clear anomalous, subdiffusive behaviour in experiments. In this paper we develop a non-Markovian mobile-immobile model which provides an explanation of this behaviour through paired theoretical and simulation approaches. The simulation model is based on a random walk on a 2D lattice with randomly distributed deep traps such that the trapping time distribution involves slowly decaying power-law asymptotics. The theoretical model uses coupled diffusion and rate equations for free and trapped excitons, respectively, with an integral term responsible for trapping. The model provides a good fitting of the experimental data, thus, showing a way for quantifying the exciton diffusion dynamics. Y1 - 2022 U6 - https://doi.org/10.1039/d2cp00557c SN - 1463-9076 SN - 1463-9084 VL - 24 IS - 22 SP - 13941 EP - 13950 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Grischek, Max A1 - Caprioglio, Pietro A1 - Zhang, Jiahuan A1 - Pena-Camargo, Francisco A1 - Sveinbjornsson, Kari A1 - Zu, Fengshuo A1 - Menzel, Dorothee A1 - Warby, Jonathan H. A1 - Li, Jinzhao A1 - Koch, Norbert A1 - Unger, Eva A1 - Korte, Lars A1 - Neher, Dieter A1 - Stolterfoht, Martin A1 - Albrecht, Steve T1 - Efficiency Potential and Voltage Loss of Inorganic CsPbI2Br Perovskite Solar Cells JF - Solar RRL N2 - Inorganic perovskite solar cells show excellent thermal stability, but the reported power conversion efficiencies are still lower than for organic-inorganic perovskites. This is mainly caused by lower open-circuit voltages (V(OC)s). Herein, the reasons for the low V-OC in inorganic CsPbI2Br perovskite solar cells are investigated. Intensity-dependent photoluminescence measurements for different layer stacks reveal that n-i-p and p-i-n CsPbI2Br solar cells exhibit a strong mismatch between quasi-Fermi level splitting (QFLS) and V-OC. Specifically, the CsPbI2Br p-i-n perovskite solar cell has a QFLS-e center dot V-OC mismatch of 179 meV, compared with 11 meV for a reference cell with an organic-inorganic perovskite of similar bandgap. On the other hand, this study shows that the CsPbI2Br films with a bandgap of 1.9 eV have a very low defect density, resulting in an efficiency potential of 20.3% with a MeO-2PACz hole-transporting layer and 20.8% on compact TiO2. Using ultraviolet photoelectron spectroscopy measurements, energy level misalignment is identified as a possible reason for the QFLS-e center dot V-OC mismatch and strategies for overcoming this V-OC limitation are discussed. This work highlights the need to control the interfacial energetics in inorganic perovskite solar cells, but also gives promise for high efficiencies once this issue is resolved. KW - CsPbI2Br KW - efficiency potentials KW - inorganic perovskites KW - photoluminescence KW - solar cells KW - voltage losses Y1 - 2022 U6 - https://doi.org/10.1002/solr.202200690 SN - 2367-198X VL - 6 IS - 11 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Caesar, Levke A1 - McCarthy, Gerard D. A1 - Thornalley, David J. R. A1 - Cahill, Niamh A1 - Rahmstorf, Stefan T1 - Reply to: Atlantic circulation change still uncertain T2 - Nature geoscience Y1 - 2022 U6 - https://doi.org/10.1038/s41561-022-00897-3 SN - 1752-0894 SN - 1752-0908 VL - 15 IS - 3 SP - 168 EP - 170 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Lepri, Stefano A1 - Pikovsky, Arkady T1 - Phase-locking dynamics of heterogeneous oscillator arrays JF - Chaos, solitons & fractals : applications in science and engineering ; an interdisciplinary journal of nonlinear science N2 - We consider an array of nearest-neighbor coupled nonlinear autonomous oscillators with quenched ran-dom frequencies and purely conservative coupling. We show that global phase-locked states emerge in finite lattices and study numerically their destruction. Upon change of model parameters, such states are found to become unstable with the generation of localized periodic and chaotic oscillations. For weak nonlinear frequency dispersion, metastability occur akin to the case of almost-conservative systems. We also compare the results with the phase-approximation in which the amplitude dynamics is adiabatically eliminated. KW - Ginzburg-Landau lattice KW - Disorder KW - Localized chaos KW - Reactive coupling Y1 - 2022 U6 - https://doi.org/10.1016/j.chaos.2021.111721 SN - 0960-0779 SN - 1873-2887 VL - 155 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Morris, Paul J. A1 - Bohdan, Artem A1 - Weidl, Martin S. A1 - Tsirou, Michelle A1 - Fulat, Karol A1 - Pohl, Martin T1 - Pre-acceleration in the electron foreshock. II. oblique whistler waves JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Thermal electrons have gyroradii many orders of magnitude smaller than the finite width of a shock, thus need to be pre-accelerated before they can cross it and be accelerated by diffusive shock acceleration. One region where pre-acceleration may occur is the inner foreshock, which upstream electrons must pass through before any potential downstream crossing. In this paper, we perform a large-scale particle-in-cell simulation that generates a single shock with parameters motivated from supernova remnants. Within the foreshock, reflected electrons excite the oblique whistler instability and produce electromagnetic whistler waves, which comove with the upstream flow and as nonlinear structures eventually reach radii of up to 5 ion-gyroradii. We show that the inner electromagnetic configuration of the whistlers evolves into complex nonlinear structures bound by a strong magnetic field around four times the upstream value. Although these nonlinear structures do not in general interact with cospatial upstream electrons, they resonate with electrons that have been reflected at the shock. We show that they can scatter, or even trap, reflected electrons, confining around 0.8% of the total upstream electron population to the region close to the shock where they can undergo substantial pre-acceleration. This acceleration process is similar to, yet approximately three times more efficient than, stochastic shock drift acceleration. Y1 - 2023 U6 - https://doi.org/10.3847/1538-4357/acaec8 SN - 0004-637X SN - 1538-4357 VL - 944 IS - 1 PB - Institute of Physics Publ. CY - London ER - TY - THES A1 - Aue, Lars T1 - Cyclone impacts on sea ice in the Atlantic Arctic Ocean T1 - Auswirkungen von Zyklonen auf das Meereis im Atlantischen Arktischen Ozean N2 - The Arctic is the hot spot of the ongoing, global climate change. Over the last decades, near-surface temperatures in the Arctic have been rising almost four times faster than on global average. This amplified warming of the Arctic and the associated rapid changes of its environment are largely influenced by interactions between individual components of the Arctic climate system. On daily to weekly time scales, storms can have major impacts on the Arctic sea-ice cover and are thus an important part of these interactions within the Arctic climate. The sea-ice impacts of storms are related to high wind speeds, which enhance the drift and deformation of sea ice, as well as to changes in the surface energy budget in association with air mass advection, which impact the seasonal sea-ice growth and melt. The occurrence of storms in the Arctic is typically associated with the passage of transient cyclones. Even though the above described mechanisms how storms/cyclones impact the Arctic sea ice are in principal known, there is a lack of statistical quantification of these effects. In accordance with that, the overarching objective of this thesis is to statistically quantify cyclone impacts on sea-ice concentration (SIC) in the Atlantic Arctic Ocean over the last four decades. In order to further advance the understanding of the related mechanisms, an additional objective is to separate dynamic and thermodynamic cyclone impacts on sea ice and assess their relative importance. Finally, this thesis aims to quantify recent changes in cyclone impacts on SIC. These research objectives are tackled utilizing various data sets, including atmospheric and oceanic reanalysis data as well as a coupled model simulation and a cyclone tracking algorithm. Results from this thesis demonstrate that cyclones are significantly impacting SIC in the Atlantic Arctic Ocean from autumn to spring, while there are mostly no significant impacts in summer. The strength and the sign (SIC decreasing or SIC increasing) of the cyclone impacts strongly depends on the considered daily time scale and the region of the Atlantic Arctic Ocean. Specifically, an initial decrease in SIC (day -3 to day 0 relative to the cyclone) is found in the Greenland, Barents and Kara Seas, while SIC increases following cyclones (day 0 to day 5 relative to the cyclone) are mostly limited to the Barents and Kara Seas. For the cold season, this results in a pronounced regional difference between overall (day -3 to day 5 relative to the cyclone) SIC-decreasing cyclone impacts in the Greenland Sea and overall SIC-increasing cyclone impacts in the Barents and Kara Seas. A cyclone case study based on a coupled model simulation indicates that both dynamic and thermodynamic mechanisms contribute to cyclone impacts on sea ice in winter. A typical pattern consisting of an initial dominance of dynamic sea-ice changes followed by enhanced thermodynamic ice growth after the cyclone passage was found. This enhanced ice growth after the cyclone passage most likely also explains the (statistical) overall SIC-increasing effects of cyclones in the Barents and Kara Seas in the cold season. Significant changes in cyclone impacts on SIC over the last four decades have emerged throughout the year. These recent changes are strongly varying from region to region and month to month. The strongest trends in cyclone impacts on SIC are found in autumn in the Barents and Kara Seas. Here, the magnitude of destructive cyclone impacts on SIC has approximately doubled over the last four decades. The SIC-increasing effects following the cyclone passage have particularly weakened in the Barents Sea in autumn. As a consequence, previously existing overall SIC-increasing cyclone impacts in this region in autumn have recently disappeared. Generally, results from this thesis show that changes in the state of the sea-ice cover (decrease in mean sea-ice concentration and thickness) and near-surface air temperature are most important for changed cyclone impacts on SIC, while changes in cyclone properties (i.e. intensity) do not play a significant role. N2 - Die Arktis ist der Hotspot des globalen Klimawandels. In den letzten Jahrzehnten sind die oberflächennahen Temperaturen in der Arktis fast viermal so schnell gestiegen wie im globalen Durchschnitt. Diese verstärkte Erwärmung der Arktis und die damit verbundenen raschen Umweltveränderungen werden u.a. durch Wechselwirkungen zwischen den einzelnen Komponenten des arktischen Klimasystems angetrieben. Auf täglichen bis wöchentlichen Zeitskalen können Stürme große Einflüsse auf das arktische Meereis haben und sind somit ein wichtiger Teil dieser Wechselwirkungen innerhalb des arktischen Klimas. Der Einfluss der Stürme auf das Meereis resultiert aus den hohen Windgeschwindigkeiten, welche die Drift und Verformung des Meereises verstärken, sowie aus Änderungen in der Oberflächenenergiebilanz im Zusammenhang mit der Advektion von Luftmassen, was das Wachstum und Schmelzen des Meereises beeinflusst. Das Auftreten von Stürmen in der Arktis ist oft mit dem Durchzug von Zyklonen verbunden. Obwohl die oben beschriebenen Mechanismen, wie sich Stürme/Zyklone auf das arktische Meereis auswirken, im Prinzip bekannt sind, fehlt es an einer statistischen Quantifizierung dieser Effekte. Dementsprechend ist das übergeordnete Ziel dieser Arbeit eine statistische Quantifizierung der Auswirkungen von Zyklonen auf die Meereiskonzentration (engl. Sea Ice Concentration, SIC) im atlantischen Arktischen Ozeans über die letzten vier Jahrzehnte. Um ein Verständnis für die zugrunde liegenden Mechanismen zu erlangen, besteht ein weiteres Ziel darin, die dynamischen und thermodynamischen Auswirkungen von Zyklonen auf das Meereis zu trennen und ihre relative Bedeutung zu analysieren. Zuletzt zielt diese Arbeit darauf ab, aktuelle Veränderungen der Zykloneneinflüsse auf das Meereis zu quantifizieren. Zum Erreichen dieser Forschungsziele werden verschiedene Datensätze genutzt, darunter atmosphärische und ozeanische Reanalysedaten sowie eine gekoppelte Modellsimulation und ein Algorithmus zur automatischen Identifikation von Zyklonen. Die Ergebnisse dieser Arbeit zeigen, dass Zyklone die SIC im atlantischen Arktischen Ozean von Herbst bis Frühjahr signifikant beeinflussen, während es im Sommer meist keine signifikanten Auswirkungen gibt. Die Stärke und das Vorzeichen (abnehmende oder zunehmende SIC) der Auswirkungen der Zyklone hängt stark von der betrachteten täglichen Zeitskala und der Region des Arktischen Ozeans ab. So ist ein anfänglicher Rückgang der SIC (Tag -3 bis Tag 0 relativ zum Zyklonendurchgang) in der Grönland-, der Barents- und der Karasee festzustellen, während ein SIC-Anstieg nach dem Zyklonendurchgang (Tag 0 bis Tag 5 relativ zum Zyklonendurchgang) hauptsächlich auf die Barents- und die Karasee beschränkt ist. Für die kalte Jahreszeit ergibt sich daraus ein ausgeprägter regionaler Unterschied zwischen insgesamt (Tag -3 bis Tag 5 relativ zum Zyklon) SIC-verringernden Zyklonenauswirkungen in der Grönlandsee und insgesamt SIC-erhöhenden Zyklonenauswirkungen in der Barents- und Karasee. Die Analyse spezifischer Zyklonenfälle basierend auf einer gekoppelten Modellsimulation zeigt, dass sowohl dynamische als auch thermodynamische Mechanismen zu den Auswirkungen von Zyklonen auf das Meereis im Winter beitragen. Hierbei wurde ein typisches Muster bestehend aus einer anfänglichen Dominanz dynamischer Meereisveränderungen gefolgt von verstärktem thermodynamischem Eiswachstum nach der Zyklonenpassage gefunden. Dieses verstärkte Eiswachstum nach der Zyklonenpassage erklärt u.a. auch die (statistischen) insgesamt SIC-erhöhenden Effekte von Zyklonen in der Barents- und Karasee im Winter. Signifikante Änderungen in den Auswirkungen von Zyklonen auf die SIC über die letzten vier Dekaden sind das ganze Jahr über zu finden. Diese Veränderungen variieren stark von Region zu Region und von Monat zu Monat. Die stärksten Trends in den Auswirkungen von Zyklonen auf die SIC sind im Herbst in der Barents- und Karasee zu beobachten. Hier hat sich die Stärke der zerstörerischen Auswirkungen von Zyklonen auf die SIC in den letzten vier Jahrzehnten ungefähr verdoppelt. Die SIC-erhöhenden Effekte nach der Zyklonenpassage haben sich in der Barentssee im Herbst besonders abgeschwächt. Dadurch sind zuvor existierende, insgesamt SIC-erhöhende Zyklonenauswirkungen in dieser Region und Jahreszeit zuletzt verschwunden. Generell zeigen die Ergebnisse dieser Arbeit, dass Änderungen im Zustand des Meereises (Abnahme der mittleren Meereiskonzentration und -dicke) sowie in der Lufttemperatur die veränderten Auswirkungen der Zyklonen auf die SIC antreiben, während Veränderungen in den Eigenschaften der Zyklonen (z.B. ihre Intensität) keine wesentliche Rolle spielen. KW - Arctic KW - atmosphere KW - sea ice KW - cyclones KW - meteorology KW - Arktis KW - Atmosphäre KW - Meereis KW - Zyklone KW - Meteorologie Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-634458 SP - VIII, 131 ER - TY - JOUR A1 - Pena-Camargo, Francisco A1 - Thiesbrummel, Jarla A1 - Hempel, Hannes A1 - Musiienko, Artem A1 - Le Corre, Vincent M. A1 - Diekmann, Jonas A1 - Warby, Jonathan A1 - Unold, Thomas A1 - Lang, Felix A1 - Neher, Dieter A1 - Stolterfoht, Martin T1 - Revealing the doping density in perovskite solar cells and its impact on device performance JF - Applied physics reviews N2 - Traditional inorganic semiconductors can be electronically doped with high precision. Conversely, there is still conjecture regarding the assessment of the electronic doping density in metal-halide perovskites, not to mention of a control thereof. This paper presents a multifaceted approach to determine the electronic doping density for a range of different lead-halide perovskite systems. Optical and electrical characterization techniques, comprising intensity-dependent and transient photoluminescence, AC Hall effect, transfer-length-methods, and charge extraction measurements were instrumental in quantifying an upper limit for the doping density. The obtained values are subsequently compared to the electrode charge per cell volume under short-circuit conditions ( CUbi/eV), which amounts to roughly 10(16) cm(-3). This figure of merit represents the critical limit below which doping-induced charges do not influence the device performance. The experimental results consistently demonstrate that the doping density is below this critical threshold 10(12) cm(-3), which means << CUbi / e V) for all common lead-based metal-halide perovskites. Nevertheless, although the density of doping-induced charges is too low to redistribute the built-in voltage in the perovskite active layer, mobile ions are present in sufficient quantities to create space-charge-regions in the active layer, reminiscent of doped pn-junctions. These results are well supported by drift-diffusion simulations, which confirm that the device performance is not affected by such low doping densities. Y1 - 2022 U6 - https://doi.org/10.1063/5.0085286 SN - 1931-9401 VL - 9 IS - 2 PB - AIP Publishing CY - Melville ER - TY - JOUR A1 - Dudi, Reetika A1 - Dietrich, Tim A1 - Rashti, Alireza A1 - Brügmann, Bernd A1 - Steinhoff, Jan A1 - Tichy, Wolfgang T1 - High-accuracy simulations of highly spinning binary neutron star systems JF - Physical review : D, Particles, fields, gravitation, and cosmology N2 - With an increasing number of expected gravitational-wave detections of binary neutron star mergers, it is essential that gravitational-wave models employed for the analysis of observational data are able to describe generic compact binary systems. This includes systems in which the individual neutron stars are millisecond pulsars for which spin effects become essential. In this work, we perform numerical-relativity simulations of binary neutron stars with aligned and antialigned spins within a range of dimensionless spins of chi similar to [-0.28, 0.58]. The simulations are performed with multiple resolutions, show a clear convergence order and, consequently, can be used to test existing waveform approximants. We find that for very high spins gravitational-wave models that have been employed for the interpretation of GW170817 and GW190425 arc not capable of describing our numerical-relativity dataset. We verify through a full parameter estimation study in which clear biases in the estimate of the tidal deformability and effective spin are present. We hope that in preparation of the next gravitational-wave observing run of the Advanced LIGO and Advanced Virgo detectors our new set of numerical-relativity data can be used to support future developments of new gravitational-wave models. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevD.105.064050 SN - 2470-0010 SN - 2470-0029 VL - 105 IS - 6 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Pohl, Martin A1 - Macias, Oscar A1 - Coleman, Phaedra A1 - Gordon, Chris T1 - Assessing the impact of hydrogen absorption on the characteristics of the Galactic center excess JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present a new reconstruction of the distribution of atomic hydrogen in the inner Galaxy that is based on explicit radiation transport modeling of line and continuum emission and a gas-flow model in the barred Galaxy that provides distance resolution for lines of sight toward the Galactic center. The main benefits of the new gas model are (a) the ability to reproduce the negative line signals seen with the HI4PI survey and (b) the accounting for gas that primarily manifests itself through absorption. We apply the new model of Galactic atomic hydrogen to an analysis of the diffuse gamma-ray emission from the inner Galaxy, for which an excess at a few GeV was reported that may be related to dark matter. We find with high significance an improved fit to the diffuse gamma-ray emission observed with the Fermi-LAT, if our new H i model is used to estimate the cosmic-ray induced diffuse gamma-ray emission. The fit still requires a nuclear bulge at high significance. Once this is included there is no evidence of a dark-matter signal, be it cuspy or cored. But an additional so-called boxy bulge is still favored by the data. This finding is robust under the variation of various parameters, for example, the excitation temperature of atomic hydrogen, and a number of tests for systematic issues. Y1 - 2022 U6 - https://doi.org/10.3847/1538-4357/ac6032 SN - 0004-637X SN - 1538-4357 VL - 929 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Stegemann, Robert A1 - Lyamkin, Viktor A1 - Cabeza, Sandra A1 - Evsevleev, Sergei A1 - Pelkner, Matthias A1 - Bruno, Giovanni T1 - Subsurface and bulk residual stress analysis of S235JRC+C Steel TIG weld by diffraction and magnetic stray field measurements JF - Experimental mechanics : an international journal of the Society for Experimental Mechanics N2 - Background Due to physical coupling between mechanical stress and magnetization in ferromagnetic materials, it is assumed in the literature that the distribution of the magnetic stray field corresponds to the internal (residual) stress of the specimen. The correlation is, however, not trivial, since the magnetic stray field is also influenced by the microstructure and the geometry of component. The understanding of the correlation between residual stress and magnetic stray field could help to evaluate the integrity of welded components. Objective This study aims at understanding the possible correlation of subsurface and bulk residual stress with magnetic stray field in a low carbon steel weld. Methods The residual stress was determined by synchrotron X-ray diffraction (SXRD, subsurface region) and by neutron diffraction (ND, bulk region). SXRD possesses a higher spatial resolution than ND. Magnetic stray fields were mapped by utilizing high-spatial-resolution giant magneto resistance (GMR) sensors. Results The subsurface residual stress overall correlates better with the magnetic stray field distribution than the bulk stress. This correlation is especially visible in the regions outside the heat affected zone, where the influence of the microstructural features is less pronounced but steep residual stress gradients are present. Conclusions It was demonstrated that the localized stray field sources without any obvious microstructural variations are associated with steep stress gradients. The good correlation between subsurface residual stress and magnetic signal indicates that the source of the magnetic stray fields is to be found in the range of the penetration depth of the SXRD measurements. KW - residual stress KW - magnetic stray field KW - synchrotron X-ray diffraction KW - neutron diffraction KW - TIG-welding Y1 - 2022 U6 - https://doi.org/10.1007/s11340-022-00841-x SN - 0014-4851 SN - 1741-2765 VL - 62 IS - 6 SP - 1017 EP - 1025 PB - Springer CY - New York ER - TY - JOUR A1 - Ashton, Gregory A1 - Dietrich, Tim T1 - The use of hypermodels to understand binary neutron star collisions JF - Nature astronomy N2 - Gravitational waves from the collision of binary neutron stars provide a unique opportunity to study the behaviour of supranuclear matter, the fundamental properties of gravity and the cosmic history of our Universe. However, given the complexity of Einstein's field equations, theoretical models that enable source-property inference suffer from systematic uncertainties due to simplifying assumptions. We develop a hypermodel approach to compare and measure the uncertainty of gravitational-wave approximants. Using state-of-the-art models, we apply this new technique to the binary neutron star observations GW170817 and GW190425 and to the sub-threshold candidate GW200311_103121. Our analysis reveals subtle systematic differences (with Bayesian odds of similar to 2) between waveform models. A frequency-dependence study suggests that this may be due to the treatment of the tidal sector. This new technique provides a proving ground for model development and a means to identify waveform systematics in future observing runs where detector improvements will increase the number and clarity of binary neutron star collisions we observe. Y1 - 2022 U6 - https://doi.org/10.1038/s41550-022-01707-x SN - 2397-3366 VL - 6 IS - 8 SP - 961 EP - 967 PB - Nature portfolio CY - Berlin ER - TY - JOUR A1 - Nakoudi, Konstantina A1 - Stachlewska, Iwona S. A1 - Ritter, Christoph T1 - An extended lidar-based cirrus cloud retrieval scheme BT - first application over an Arctic site JF - Optics express : the international electronic journal of optics / Optica N2 - Accurate and precise characterization of cirrus cloud geometrical and optical properties is essential for better constraining their radiative footprint. A lidar-based retrieval scheme is proposed here, with its performance assessed on fine spatio-temporal observations over the Arctic site of Ny-Alesund, Svalbard. Two contributions related to cirrus geometrical (dynamic Wavelet Covariance Transform (WCT)) and optical properties (constrained Klett) are reported. The dynamic WCT rendered cirrus detection more robust, especially for thin cirrus layers that frequently remained undetected by the classical WCT method. Regarding optical characterization, we developed an iterative scheme for determining the cirrus lidar ratio (LRci) that is a crucial parameter for aerosol - cloud discrimination. Building upon the Klett-Fernald method, the LRci was constrained by an additional reference value. In established methods, such as the double-ended Klett, an aerosol-free reference value is applied. In the proposed constrained Klett, however, the reference value was approximated from cloud-free or low cloud optical depth (COD up to 0.2) profiles and proved to agree with independent Raman estimates. For optically thin cirrus, the constrained Klett inherent uncertainties reached 50% (60-74%) in terms of COD (LRci). However, for opaque cirrus COD (LRci) uncertainties were lower than 10% (15%). The detection method discrepancies (dynamic versus static WCT) had a higher impact on the optical properties of low COD layers (up to 90%) compared to optically thicker ones (less than 10%). The constrained Klett presented high agreement with two established retrievals. For an exemplary cirrus cloud, the constrained Klett estimated the COD355 (LRci355) at 0.28 +/- 0.17 (29 +/- 4 sr), the double-ended Klett at 0.27 +/- 0.15 (32 +/- 4 sr) and the Raman retrievals at 0.22 +/- 0.12 (26 +/- 11 sr). Our approach to determine the necessary reference value can also be applied in established methods and increase their accuracy. In contrast, the classical aerosol-free assumption led to 44 sr LRci overestimation in optically thin layers and 2-8 sr in thicker ones. The multiple scattering effect was corrected using Eloranta (1998) and accounted for 50-60% extinction underestimation near the cloud base and 20-30% within the cirrus layers. Y1 - 2021 U6 - https://doi.org/10.1364/OE.414770 SN - 1094-4087 VL - 29 IS - 6 SP - 8553 EP - 8580 PB - Optical Society of America CY - Washington ER - TY - JOUR A1 - Ramos-Larios, Gerardo A1 - Toala, Jesús Alberto A1 - Rodriguez-Gonzalez, Janis B. A1 - Guerrero, Martin A. A1 - Gomez-Gonzalez, Víctor Mauricio Alfonso T1 - Rings and arcs around evolved stars - III. Physical conditions of the ring-like structures in the planetary nebula IC 4406 revealed by MUSE JF - Monthly notices of the Royal Astronomical Society N2 - We present the analysis of Very Large Telescope Multi Unit Spectroscopic Explorer (MUSE) observations of the planetary nebula (PN) IC 4406. MUSE images in key emission lines are used to unveil the presence of at least five ring-like structures north and south of the main nebula of IC4406. MUSE spectra are extracted from the rings to unambiguously assess for the first time in a PN their physical conditions, electron density (n(e)), and temperature (T-e). The rings are found to have similar T-e as the rim of the main nebula, but smaller n(e). Ratios between different ionic species suggest that the rings of IC4406 have a lower ionization state than the main cavity, in contrast to what was suggested for the rings in NGC 6543, the Cat's Eye Nebula. KW - stars: evolution KW - stars: winds, outflows KW - planetary nebulae: general; KW - planetary nebulae: individual: IC4406 Y1 - 2022 SN - 0035-8711 SN - 1365-2966 VL - 513 IS - 2 SP - 2862 EP - 2868 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - van Marle, Allard Jan A1 - Bohdan, Artem A1 - Morris, Paul J. A1 - Pohl, Martin A1 - Marcowith, Alexandre T1 - Diffusive shock acceleration at oblique high mach number shocks JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - The current paradigm of cosmic-ray (CR) origin states that the greater part of galactic CRs is produced by supernova remnants. The interaction of supernova ejecta with the interstellar medium after a supernova's explosions results in shocks responsible for CR acceleration via diffusive shock acceleration (DSA). We use particle-in-cell (PIC) simulations and a combined PIC-magnetohydrodynamic (PIC-MHD) technique to investigate whether DSA can occur in oblique high Mach number shocks. Using the PIC method, we follow the formation of the shock and determine the fraction of the particles that gets involved in DSA. With this result, we use PIC-MHD simulations to model the large-scale structure of the plasma and the magnetic field surrounding the shock and find out whether or not the reflected particles can generate upstream turbulence and trigger DSA. We find that the feasibility of this process in oblique shocks depends strongly on the Alfvenic Mach number, and the DSA process is more likely to be triggered at high Mach number shocks. Y1 - 2022 U6 - https://doi.org/10.3847/1538-4357/ac5962 SN - 1538-4357 VL - 929 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Wiebeler, Christian A1 - Vollbrecht, Joachim A1 - Neuba, Adam A1 - Kitzerow, Heinz A1 - Schumacher, Stefan T1 - Unraveling the electrochemical and spectroscopic properties of neutral and negatively charged perylene tetraethylesters JF - Scientific reports N2 - A detailed investigation of the energy levels of perylene-3,4,9,10-tetracarboxylic tetraethylester as a representative compound for the whole family of perylene esters was performed. It was revealed via electrochemical measurements that one oxidation and two reductions take place. The bandgaps determined via the electrochemical approach are in good agreement with the optical bandgap obtained from the absorption spectra via a Tauc plot. In addition, absorption spectra in dependence of the electrochemical potential were the basis for extensive quantum-chemical calculations of the neutral, monoanionic, and dianionic molecules. For this purpose, calculations based on density functional theory were compared with post-Hartree-Fock methods and the CAM-B3LYP functional proved to be the most reliable choice for the calculation of absorption spectra. Furthermore, spectral features found experimentally could be reproduced with vibronic calculations and allowed to understand their origins. In particular, the two lowest energy absorption bands of the anion are not caused by absorption of two distinct electronic states, which might have been expected from vertical excitation calculations, but both states exhibit a strong vibronic progression resulting in contributions to both bands. Y1 - 2021 U6 - https://doi.org/10.1038/s41598-021-95551-0 SN - 2045-2322 VL - 11 IS - 1 PB - Macmillan Publishers Limited, part of Springer Nature CY - London ER - TY - JOUR A1 - Sidoli, Lara A1 - Sguera, Vito A1 - Esposito, Paolo A1 - Oskinova, Lida A1 - Polletta, Maria del Carmen T1 - XMM-Newton discovery of very high obscuration in the candidate Supergiant Fast X-ray Transient AX J1714.1-3912 JF - Monthly notices of the Royal Astronomical Society N2 - We have analysed an archival XMM-Newton EPIC observation that serendipitously covered the sky position of a variable X-ray source AX J1714.1-3912, previously suggested to be a Supergiant Fast X-ray Transient (SFXT). During the XMM-Newton observation the source is variable on a timescale of hundred seconds and shows two luminosity states, with a flaring activity followed by unflared emission, with a variability amplitude of a factor of about 50. We have discovered an intense iron emission line with a centroid energy of 6.4 keV in the power law-like spectrum, modified by a large absorption (N-H similar to 10(24) cm(-2)), never observed before from this source. This X-ray spectrum is unusual for an SFXT, but resembles the so-called 'highly obscured sources', high mass X-ray binaries (HMXBs) hosting an evolved B[e] supergiant companion (sgB[e]). This might suggest that AX J1714.1-3912 is a new member of this rare type of HMXBs, which includes IGR J16318-4848 and CI Camelopardalis. Increasing this small population of sources would be remarkable, as they represent an interesting short transition evolutionary stage in the evolution of massive binaries. Nevertheless, AX J1714.1-3912 appears to share X-ray properties of both kinds of HMXBs (SFXT versus sgB[e] HMXB). Therefore, further investigations of the companion star are needed to disentangle the two hypothesis. KW - X-rays: binaries KW - X-rays: individual: AX J1714.1-3912 Y1 - 2022 U6 - https://doi.org/10.1093/mnras/stac691 SN - 0035-8711 SN - 1365-2966 VL - 512 IS - 2 SP - 2929 EP - 2935 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Wolff, Nora A1 - Klimm, Detlef A1 - Habicht, Klaus A1 - Fritsch, Katharina T1 - Crystal growth and thermodynamic investigation of Bi2M2+O4 (M = Pd, Cu) JF - CrystEngComm / The Royal Society of Chemistry N2 - Phase equilibria that are relevant for the growth of Bi2MO4 have been studied experimentally, and the ternary phase diagrams of Bi2O3-PdO2-Pd and Bi2O3-Cu2O-CuO and its isopleth section Bi2O3-CuO were redetermined. It is shown that every melting and crystallization process is always accompanied by a redox process at the phase boundary and that for both title compounds, the valence of the transition metal is lowered during melting. Vice versa, during crystal growth, O-2 must be transported through the melt to the phase boundary. Based on these new insights provided by our thermodynamic studies, Bi2CuO4 single crystals with a length of up to 7 cm and a diameter of 6 mm were grown by the OFZ technique to be used for investigations of magnetic, electronic and thermal transport properties. The grown crystals were characterized by powder X-ray diffraction, Laue, magnetization and specific heat measurements. Y1 - 2021 U6 - https://doi.org/10.1039/d1ce00220a SN - 1466-8033 VL - 23 IS - 17 SP - 3230 EP - 3238 PB - Royal Society of Chemistry CY - Cambridge ER -