TY - JOUR A1 - Mishra, Praveen Kumar A1 - Anoop, Ambili A1 - Schettler, Georg A1 - Prasad, Sushma A1 - Jehangir, Arshid A1 - Menzel, Peter A1 - Naumann, Rudolf A1 - Yousuf, A. R. A1 - Basavaiah, Nathani A1 - Deenadayalan, Kannan A1 - Wiesner, Martin G. A1 - Gaye, Birgit T1 - Reconstructed late Quaternary hydrological changes from Lake Tso Moriri, NW Himalaya JF - Quaternary international : the journal of the International Union for Quaternary Research N2 - We present the results of our investigations on the radiocarbon dated core sediments from the Lake Tso Moriri, NW Himalaya aimed at reconstructing palaeohydrological changes in this climatically sensitive region. Based on the detailed geochemical, mineralogical and sedimentological analysis, we recognise several short-term fluctuations superimposed upon seven major palaeohydrological stages identified in this lake since similar to 26 cal ka. Stage I (>20.2 cal ka): shallow lake characterised by input of coarse-grained detrital sediments; Stage II (20.2-16.4 cal ka): lake deepening and intensification of this trend ca. 18 cal ka; Stage III (16.4-11.2 cal ka): rising lake levels with a short term wet phase (13.1-11.7 cal ka); Stage IV (11.2-8.5 cal ka): early Holocene hydrological maxima and highest lake levels inferred to have resulted from early Holocene Indian monsoon intensification, as records from central Asia indicate weaker westerlies during this interval; Stage V (8.5-5.5 cal ka): mid-Holocene climate deterioration; Stage VI (5.5-2.7 cal ka): progressive lowering of lake level; Stage VII (2.7-0 cal ka): onset of modern conditions. The reconstructed hydrological variability in Lake Tso Moriri is governed by temperature changes (meltwater inflow) and monsoon precipitation (increased runoff). A regional comparison shows considerable differences with other palaeorecords from peninsular India during late Holocene. (C) 2014 Elsevier Ltd and INQUA. All rights reserved. KW - Authigenic carbonates KW - Holocene KW - Indian summer monsoon KW - Lake sediments KW - Tso Moriri Lake KW - Westerlies Y1 - 2015 U6 - https://doi.org/10.1016/j.quaint.2014.11.040 SN - 1040-6182 SN - 1873-4553 VL - 371 SP - 76 EP - 86 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Wang, Yongbo A1 - Herzschuh, Ulrike T1 - Reassessment of Holocene vegetation change on the upper Tibetan Plateau using the pollen-based REVEALS model JF - Review of palaeobotany and palynology : an international journal N2 - Previous studies based on fossil pollen data have reported significant changes in vegetation on the alpine Tibetan Plateau during the Holocene. However, since the relative proportions of fossil pollen taxa are largely influenced by individual pollen productivities and the dispersal characteristics, such inferences on vegetation have the potential to be considerably biased. We therefore examined the modern pollen-vegetation relationships for four common pollen species on the Tibetan Plateau, using Extended R-value (ERV) models. Assuming an average radius of 100 m for the sampled lakes, we estimated the relevant source area of pollen (RSAP) to be 2200 m (which represents the distance from the lake). Using Poaceae as the reference taxa (Pollen Productivity Estimate, PPE = 1), ERV Submodel 2 derived relative high PPEs for the steppe and desert taxa: 2.079 +/- 0.432 for Artemisia and 5.379 +/- 1.077 for Chenopodiaceae. Low PPEs were estimated for the Cyperaceae (1.036 +/- 0.012). whose plants are characteristic of the alpine Kobresia meadows. Applying these PPEs to four fossil pollen sequences since the Late Glacial, the plant abundances on the central and north-eastern Tibetan Plateau were quantified using the "Regional Estimates of Vegetation Abundance from Large Sites" (REVEALS) model. The proportions of Artemisia and Chenopodiaceae were greatly reduced compared to their original pollen percentages in the reconstructed vegetation, owing to their high productivities and their dispersal characteristics, while Cyperaceae showed a relative increase in the vegetation reconstruction. The reconstructed vegetation assemblages of the four pollen sequence sites always yielded smaller compositional species turnovers than suggested by the pollen spectra, as revealed by Detrended Canonical Correspondence Analyses (DCCA) of the Holocene sections. The strength of the previously reported vegetation changes may therefore have been overestimated, which indicates the importance of taking into account pollen-vegetation relationships when discussing the potential drivers (such as climate, land use, atmospheric CO(2) concentrations) and implications (such as for land surface-climate feedbacks, carbon storage, and biodiversity) of vegetation change. KW - pollen productivity KW - vegetation reconstruction KW - ERV model KW - REVEALS model KW - Holocene KW - Tibetan Plateau Y1 - 2011 U6 - https://doi.org/10.1016/j.revpalbo.2011.09.004 SN - 0034-6667 VL - 168 IS - 1 SP - 31 EP - 40 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Mischke, Steffen A1 - Lai, Zhongping A1 - Aichner, Bernhard A1 - Heinecke, Liv A1 - Mahmoudov, Zafar A1 - Kuessner, Marie A1 - Herzschuh, Ulrike T1 - Radiocarbon and optically stimulated luminescence dating of sediments from Lake Karakul, Tajikistan JF - Quaternary geochronology : the international research and review journal on advances in quaternary dating techniques N2 - Lake Karakul in the eastern Pamirs is a large and closed-basin lake in a partly glaciated catchment. Two parallel sediment cores were collected from 12 m water depth. The cores were correlated using XRF analysis and dated using radiocarbon and OSL techniques. The age results of the two dating methods are generally in agreement. The correlated composite core of 12.26 m length represents continuous accumulation of sediments in the lake basin since 31 ka. The lake reservoir effect (LRE) remained relatively constant over this period. High sediment accumulation rates (SedARs) were recorded before 23 ka and after 6.5 ka. The relatively close position of the coring location near the eastern shore of the lake implies that high SedARs resulted from low lake levels. Thus, high SedARs and lower lake levels before 23 ka probably reflect cold and dry climate conditions that inhibited the arrival of moist air at high elevation in the eastern Pamirs. Low lake levels after 6.5 ka were probably caused by declining temperatures after the warmer early Holocene, which had caused a reduction in water resources stored as snow, ice and frozen ground in the catchment. Low SedARs during 23-6.5 ka suggest increased lake levels in Lake Karakul. A short-lived increase of SedARs at 15 ka probably corresponds to the rapid melting of glaciers in the Karakul catchment during the Greenland Interstadial le, shortly after glaciers in the catchment had reached their maximum extents. The sediment cores from Lake Karakul represent an important climate archive with robust chronology for the last glacial interglacial cycle from Central Asia. (C) 2017 Elsevier B.V. All rights reserved. KW - Radiocarbon and OSL dating KW - Lake sediments KW - Pamir mountains KW - Late pleistocene KW - Holocene Y1 - 2017 U6 - https://doi.org/10.1016/j.quageo.2017.05.008 SN - 1871-1014 SN - 1878-0350 VL - 41 SP - 51 EP - 61 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Marquer, Laurent A1 - Gaillard, Marie-Jose A1 - Sugita, Shinya A1 - Poska, Anneli A1 - Trondman, Anna-Kari A1 - Mazier, Florence A1 - Nielsen, Anne Birgitte A1 - Fyfe, Ralph M. A1 - Jonsson, Anna Maria A1 - Smith, Benjamin A1 - Kaplan, Jed O. A1 - Alenius, Teija A1 - Birks, H. John B. A1 - Bjune, Anne E. A1 - Christiansen, Jorg A1 - Dodson, John A1 - Edwards, Kevin J. A1 - Giesecke, Thomas A1 - Herzschuh, Ulrike A1 - Kangur, Mihkel A1 - Koff, Tiiu A1 - Latalowa, Maligorzata A1 - Lechterbeck, Jutta A1 - Olofsson, Jorgen A1 - Seppa, Heikki T1 - Quantifying the effects of land use and climate on Holocene vegetation in Europe JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Early agriculture can be detected in palaeovegetation records, but quantification of the relative importance of climate and land use in influencing regional vegetation composition since the onset of agriculture is a topic that is rarely addressed. We present a novel approach that combines pollen-based REVEALS estimates of plant cover with climate, anthropogenic land-cover and dynamic vegetation modelling results. This is used to quantify the relative impacts of land use and climate on Holocene vegetation at a sub-continental scale, i.e. northern and western Europe north of the Alps. We use redundancy analysis and variation partitioning to quantify the percentage of variation in vegetation composition explained by the climate and land-use variables, and Monte Carlo permutation tests to assess the statistical significance of each variable. We further use a similarity index to combine pollen based REVEALS estimates with climate-driven dynamic vegetation modelling results. The overall results indicate that climate is the major driver of vegetation when the Holocene is considered as a whole and at the sub-continental scale, although land use is important regionally. Four critical phases of land-use effects on vegetation are identified. The first phase (from 7000 to 6500 BP) corresponds to the early impacts on vegetation of farming and Neolithic forest clearance and to the dominance of climate as a driver of vegetation change. During the second phase (from 4500 to 4000 BP), land use becomes a major control of vegetation. Climate is still the principal driver, although its influence decreases gradually. The third phase (from 2000 to 1500 BP) is characterised by the continued role of climate on vegetation as a consequence of late-Holocene climate shifts and specific climate events that influence vegetation as well as land use. The last phase (from 500 to 350 BP) shows an acceleration of vegetation changes, in particular during the last century, caused by new farming practices and forestry in response to population growth and industrialization. This is a unique signature of anthropogenic impact within the Holocene but European vegetation remains climatically sensitive and thus may continue to respond to ongoing climate change. (C) 2017 Elsevier Ltd. All rights reserved. KW - Climate KW - Holocene KW - Human impact KW - Land use KW - LPJ-GUESS KW - Europe KW - Pollen KW - REVEALS KW - Vegetation composition Y1 - 2017 U6 - https://doi.org/10.1016/j.quascirev.2017.07.001 SN - 0277-3791 VL - 171 SP - 20 EP - 37 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Prasad, Sushma A1 - Anoop, A. A1 - Riedel, N. A1 - Sarkar, Saswati A1 - Menzel, P. A1 - Basavaiah, Nathani A1 - Krishnan, R. A1 - Fuller, D. A1 - Plessen, Birgit A1 - Gaye, B. A1 - Roehl, U. A1 - Wilkes, H. A1 - Sachse, Dirk A1 - Sawant, R. A1 - Wiesner, M. G. A1 - Stebich, M. T1 - Prolonged monsoon droughts and links to Indo-Pacific warm pool: A Holocene record from Lonar Lake, central India JF - Earth & planetary science letters N2 - Concerns about the regional impact of global climate change in a warming scenario have highlighted the gaps in our understanding of the Indian Summer Monsoon (ISM, also referred to as the Indian Ocean summer monsoon) and the absence of long term palaeoclimate data from the central Indian core monsoon zone (CMZ). Here we present the first high resolution, well-dated, multiproxy reconstruction of Holocene palaeoclimate from a 10 m long sediment core raised from the Lonar Lake in central India. We show that while the early Holocene onset of-intensified monsoon in the CMZ is similar to that reported from other ISM records, the Lonar data shows two prolonged droughts (PD, multidecadal to centennial periods of weaker monsoon) between 4.6-3.9 and 2-0.6 cal ka. A comparison of our record with available data from other ISM influenced sites shows that the impact of these PD was observed in varying degrees throughout the ISM realm and coincides with intervals of higher solar irradiance. We demonstrate that (i) the regional warming in the Indo-Pacific Warm Pool (IPWP) plays an important role in causing ISM PD through changes in meridional overturning circulation and position of the anomalous Walker cell; (ii) the long term influence of conditions like El Nino-Southern Oscillation (ENSO) on the ISM began only ca. 2 cal ka BP and is coincident with the warming of the southern IPWP; (iii) the first settlements in central India coincided with the onset of the first PD and agricultural populations flourished between the two PD, highlighting the significance of natural climate variability and PD as major environmental factors affecting human settlements. KW - Indian summer monsoon KW - ENSO KW - prolonged droughts KW - Holocene KW - Lonar Lake Y1 - 2014 U6 - https://doi.org/10.1016/j.epsl.2014.01.043 SN - 0012-821X SN - 1385-013X VL - 391 SP - 171 EP - 182 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Pestryakova, Luidmila Agafyevna A1 - Herzschuh, Ulrike A1 - Wetterich, Sebastian A1 - Ulrich, Mathias T1 - Present-day variability and Holocene dynamics of permafrost-affected lakes in central Yakutia (Eastern Siberia) inferred from diatom records JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Thermokarst lakes are assumed to develop cyclically, driven by processes that are triggered by climate and maintained by internal feedbacks that may trigger lake drainage. However, the duration of these cycles remains uncertain, as well as whether or not they affect the stabilization of lake ecosystems in permafrost regions over millennial time scales. Our research has combined investigations into modern lake-to-lake variability with a study of the long-term development of individual lakes. We have investigated the physico-chemical and diatom compositions of a set of 101 lakes with a variety of different origins in central Yakutia (Eastern Siberia), including thermokarst lakes, fluvial-erosion thermokarst lakes, fluvial-erosion lakes, and dune lakes. We found a significant relationship between lake genesis and the present-day variability in environmental and diatom characteristics, as revealed by multi-response permutation procedures, indicator species analyses, and redundancy analyses. Environmental parameters also exhibit a significant correlation with variations in the diatom data, for which they may have been to a substantial extent responsible. Mg and SO4 concentrations, together with pH and water depth, were identified as the most important parameters, influencing the variations in the diatom data almost as much as the entire environmental parameter set. We were therefore able to establish a robust Mg-diatom transfer function, which was then applied to three Holocene lake records. From these reconstructions, together with a general interpretation of the diatom record (including, e.g., the ratio between benthic/epiphytic and planktonic taxa), we have been able to infer that all three of these lakes show (1) a continuous record with no desiccation events, (2) high lake water-levels during the early Holocene, (3) centennial to millennial scale variability, and (4) high levels of variability during the early Holocene but rather stable conditions during the late Holocene (a feature that is also known from other sites around the world). We therefore concluded that the development of these three lakes was mainly driven directly by the climate, rather than by thaw lake cycling. KW - Diatoms KW - Holocene KW - Thaw lakes KW - Thermokarst KW - Alas KW - Central Yakutia KW - Alkalinity Y1 - 2012 U6 - https://doi.org/10.1016/j.quascirev.2012.06.020 SN - 0277-3791 VL - 51 SP - 56 EP - 70 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Tian, Fang A1 - Cao, Xianyong A1 - Dallmeyer, Anne A1 - Zhao, Yan A1 - Ni, Jian A1 - Herzschuh, Ulrike T1 - Pollen-climate relationships in time (9 ka, 6 ka, 0 ka) and space (upland vs. lowland) in eastern continental Asia JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Temporal and spatial stability of the vegetation climate relationship is a basic ecological assumption for pollen-based quantitative inferences of past climate change and for predicting future vegetation. We explore this assumption for the Holocene in eastern continental Asia (China, Mongolia). Boosted regression trees (BRT) between fossil pollen taxa percentages (Abies, Artemisia, Betula, Chenopodiaceae, Cyperaceae, Ephedra, Picea, Pinus, Poaceae and Quercus) and climate model outputs of mean annual precipitation (P-ann) and mean temperature of the warmest month (Mt(wa)) for 9 and 6 ka (ka = thousand years before present) were set up and results compared to those obtained from relating modern pollen to modern climate. Overall, our results reveal only slight temporal differences in the pollen climate relationships. Our analyses suggest that the importance of P-ann compared with Mt(wa) for taxa distribution is higher today than it was at 6 ka and 9 ka. In particular, the relevance of P-ann for Picea and Pinus increases and has become the main determinant. This change in the climate tree pollen relationship parallels a widespread tree pollen decrease in north-central China and the eastern Tibetan Plateau. We assume that this is at least partly related to vegetation climate disequilibrium originating from human impact. Increased atmospheric CO2 concentration may have permitted the expansion of moisture-loving herb taxa (Cyperaceae and Poaceae) during the late Holocene into arid/semi-arid areas. We furthermore find that the pollen climate relationship between north-central China and the eastern Tibetan Plateau is generally similar, but that regional differences are larger than temporal differences. In summary, vegetation climate relationships in China are generally stable in space and time, and pollen-based climate reconstructions can be applied to the Holocene. Regional differences imply the calibration-set should be restricted spatially. KW - Boosted regression trees KW - China KW - Holocene KW - Niche stability KW - Pollen-climate relationship KW - Uniformitarianism Y1 - 2016 U6 - https://doi.org/10.1016/j.quascirev.2016.11.027 SN - 0277-3791 VL - 156 SP - 1 EP - 11 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Tian, Fang A1 - Qin, Wen A1 - Zhang, Ran A1 - Herzschuh, Ulrike A1 - Ni, Jian A1 - Zhang, Chengjun A1 - Mischke, Steffen A1 - Cao, Xianyong T1 - Palynological evidence for the temporal stability of the plant community in the Yellow River Source Area over the last 7,400 years JF - Vegetation history and archaeobotany N2 - The terrestrial ecosystem in the Yellow River Source Area (YRSA) is sensitive to climate change and human impacts, although past vegetation change and the degree of human disturbance are still largely unknown. A 170-cm-long sediment core covering the last 7,400 years was collected from Lake Xingxinghai (XXH) in the YRSA. Pollen, together with a series of other environmental proxies (including grain size, total organic carbon (TOC) and carbonate content), were analysed to explore past vegetation and environmental changes for the YRSA. Dominant and common pollen components-Cyperaceae, Poaceae, Artemisia, Chenopodiaceae and Asteraceae-are stable throughout the last 7,400 years. Slight vegetation change is inferred from an increasing trend of Cyperaceae and decreasing trend of Poaceae, suggesting that alpine steppe was replaced by alpine meadow at ca. 3.5 ka cal bp. The vegetation transformation indicates a generally wetter climate during the middle and late Holocene, which is supported by increased amounts of TOC and Pediastrum (representing high water-level) and is consistent with previous past climate records from the north-eastern Tibetan Plateau. Our results find no evidence of human impact on the regional vegetation surrounding XXH, hence we conclude the vegetation change likely reflects the regional climate signal. KW - Pollen KW - Lake Xingxinghai KW - Tibetan Plateau KW - Holocene KW - Vegetation change KW - Regional climate Y1 - 2022 U6 - https://doi.org/10.1007/s00334-022-00870-5 SN - 0939-6314 SN - 1617-6278 VL - 31 IS - 6 SP - 549 EP - 558 PB - Springer CY - New York ER - TY - JOUR A1 - Mischke, Steffen A1 - Zhang, Chengjun T1 - Ostracod distribution in Ulungur Lake (Xinjiang, China) and a reassessed Holocene record JF - Ecological research N2 - Ostracod shells in surface sediments from Ulungur Lake (Xinjiang, China) belong mainly to Limnocythere inopinata as the dominant species, and Candona neglecta and Darwinula stevensoni as accompanying, less abundant taxa. Shells of an additional nine species were recorded only sporadically. The three most abundant ostracods have wide tolerance ranges in terms of salinity, substrate and water depth. The similarly recorded bivalve Pisidium subtruncatum, and the gastropods Gyraulus chinensis and Radix auricularia belong to the most tolerant representatives of the genera. The bivalve and gastropods, in addition to the ostracod assemblage, reflect the fact that Ulungur Lake has experienced strong lake level and salinity variations due to water withdrawal in the catchment and the counteracting diversion of river waters to the lake in recent decades. The substrate in Ulungur Lake is typically fine-grained, apart from the delta region of the Ulungur River channel, which is marked by relatively coarse-grained detrital sediments barren of ostracod shells. This channel was created 40 years ago to divert water to Ulungur Lake and support its local fisheries and recreational facilities. A reassessed Holocene ostracod record from the lake shows that a significantly higher salinity and lower lake level existed in the early Holocene before 6.0 ka in response to the regional climate. In contrast, a higher lake level and lowest salinity is inferred for the late Holocene period between ca. 3.6 and 1.3 ka before present. Afterwards, the lake level declined and salinity increased in response to regional moisture reduction, although conditions similar to the early Holocene lake status were not re-established. Our surface-sediment-derived data provide a baseline for analysis of future environmental variations due to global climate change and regional water management. KW - Ostracoda KW - Water depth KW - Substrate KW - Holocene KW - Central Asia Y1 - 2011 U6 - https://doi.org/10.1007/s11284-010-0768-1 SN - 0912-3814 VL - 26 IS - 1 SP - 133 EP - 145 PB - Springer CY - Tokyo ER - TY - JOUR A1 - Cao, Xianyong A1 - Tian, Fang A1 - Dallmeyer, Anne A1 - Herzschuh, Ulrike T1 - Northern Hemisphere biome changes (> 30 degrees N) since 40 cal ka BP and their driving factors inferred from model-data comparisons JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Ongoing and past biome transitions are generally assigned to climate and atmospheric changes (e.g. temperature, precipitation, CO2), but the major regional factors or factor combinations that drive vegetation change often remain unknown. Modelling studies applying ensemble runs can help to partition the effects of the different drivers. Such studies require careful validation with observational data. In this study, fossil pollen records from 741 sites in Europe, 728 sites in North America, and 418 sites in Asia (extracted from terrestrial archives including lake sediments) are used to reconstruct biomes at selected time slices between 40 cal ka BP (calibrated thousand years before present) and today. These results are used to validate Northern Hemisphere biome distributions (>30 degrees N) simulated by the biome model BIOME4 that has been forced with climate data simulated by a General Circulation model. Quantitative comparisons between pollen- and model-based results show a generally good fit at a broad spatial scale. Mismatches occur in central-arid Asia with a broader extent of grassland throughout the last 40 ka (likely due to the over-representation of Artemisia and Chenopodiaceae pollen) and in Europe with over-estimation of tundra at 0 cal ka BP (likely due to human impacts to some extent). Sensitivity analysis reveals that broad-scale biome changes follow the global signal of major postglacial temperature change, although the climatic variables vary in their regional and temporal importance. Temperature is the dominant variable in Europe and other rather maritime areas for biome changes between 21 and 14 ka, while precipitation is highly important in the arid inland regions of Asia and North America. The ecophysiological effect of changes in the atmospheric CO2-concentration has the highest impact during this transition than in other intervals. With respect to modern vegetation in the course of global warming, our findings imply that vegetation change in the Northern Hemisphere may be strongly limited by effective moisture changes, i.e. the combined effect of temperature and precipitation, particularly in inland areas. (C) 2019 Elsevier Ltd. All rights reserved. KW - Biomisation KW - Climate warming KW - Europe KW - Holocene KW - Model-data comparison KW - Northern Asia KW - North America KW - Pollen KW - Siberia KW - Vegetation driver Y1 - 2019 U6 - https://doi.org/10.1016/j.quascirev.2019.07.034 SN - 0277-3791 VL - 220 SP - 291 EP - 309 PB - Elsevier CY - Oxford ER -