TY - THES A1 - Gonzalez Duran, Enrique T1 - Genetic control of intracellular gene transfer by DNA repair in N. tabacum N2 - Mitochondria and plastids are organelles with an endosymbiotic origin. During evolution, many genes are lost from the organellar genomes and get integrated in the nuclear genome, in what is known as intracellular/endosymbiotic gene transfer (IGT/EGT). IGT has been reproduced experimentally in Nicotiana tabacum at a gene transfer rate (GTR) of 1 event in 5 million cells, but, despite its centrality to eukaryotic evolution, there are no genetic factors known to influence the frequency of IGT in higher eukaryotes. The focus of this work was to determine the role of different DNA repair pathways of double strand break repair (DSBR) in the integration step of organellar DNA in the nuclear genome during IGT. Here, a CRISPR/Cas9 mutagenesis strategy was implemented in N. tabacum, with the aim of generating mutants in nuclear genes without expected visible phenotypes. This strategy led to the generation of a collection of independent mutants in the LIG4 (necessary for non-homologous end joining, NHEJ) and POLQ genes (necessary for microhomology mediated end joining, MMEJ). Targeting of other DSBR genes (KU70, KU80, RPA1C) generated mutants with unexpectedly strong developmental phenotypes.. These factors have telomeric roles, hinting towards a possible relationship between telomere length, and strength of developmental disruption upon loss of telomere structure in plants. The mutants were made in a genetic background encoding a plastid-encoded IGT reporter, that confers kanamycin resistance upon transfer to the nucleus. Through large scale independent experiments, increased IGT from the chloroplast to the nucleus was observed in lig4 mutants, as well as lines encoding a POLQ gene with a defective polymerase domain (polqΔPol). This shows that NHEJ or MMEJ have a double-sided relationship with IGT: while transferred genes may integrate using either pathway, the presence of both pathways suppresses IGT in wild-type somatic cells, thus demonstrating for the first time the extent on which nuclear genes control IGT frequency in plants. The IGT frequency increases in the mutants are likely mediated by increased availability of double strand breaks for integration. Additionally, kinetic analysis reveals that gene transfer (GT) events accumulate linearly as a function of time spent under antibiotic selection in the experiment, demonstrating that, contrary to what was previously thought, there is no such thing as a single GTR in somatic IGT experiments. Furthermore, IGT in tissue culture experiments appears to be the result of a "race against the clock" for integration in the nuclear genome, that starts when the organellar DNA arrives to the nucleus granting transient antibiotic resistance. GT events and escapes of kanamycin selection may be two possible outcomes from this race: those instances where the organellar DNA gets to integrate are recovered as GT events, and in those cases where timely integration fails, antibiotic resistance cannot be sustained, and end up considered as escapes. In the mutants, increased opportunities for integration in the nuclear genome change the overall ratio between IGT and escape events. The resources generated here are promising starting points for future research: (1) the mutant collection, for the further study of processes that depend on DNA repair in plants (2) the collection of GT lines obtained from these experiments, for the study of the effect of DSBR pathways over integration patterns and stability of transferred genes and (3) the developed CRISPR/Cas9 workflow for mutant generation, to make N. tabacum meet its potential as an attractive model for answering complex biological questions. N2 - Mitochondrien und Plastiden sind beides Organellen endosymbiotischen Ursprungs. Im Laufe der Evolution gehen viele Gene aus den Organellengenomen verloren und werden in das Kerngenom integriert, was als intrazellulärer/endosymbiotischer Gentransfer (IGT/EGT) bezeichnet wird. IGT konnte experimentell in Nicotiana tabacum mit einer Gentransferrate (GTR) von einem Ereignis in fünf Millionen Zellen nachgestellt werden, aber trotz seiner zentralen Bedeutung für die eukaryotische Evolution sind keine genetischen Faktoren bekannt, die die Häufigkeit von IGT in höheren Eukaryoten beeinflussen. Der Schwerpunkt dieser Arbeit lag auf der Bestimmung der Rolle verschiedener DNA-Reparaturwege der Doppelstrangbruchreparatur (DSBR) bei der Integration von Organellen-DNA in das Kerngenom während des IGT. Dazu wurde in N. tabacum eine CRISPR/Cas9-basierte Mutagenesestrategie angewandt, mit dem Ziel, Mutanten in Kerngenen zu erzeugen, für die keine sichtbaren Phänotypen zu erwarten sind. Diese Strategie führte zur Erzeugung einer Reihe unabhängiger Mutanten im LIG4-Gen (notwendig für „non-homologous end joining“, die nicht-homologe Verbindung von Enden, NHEJ) und POLQ (notwendig für „microhomology mediated end joining“, die Mikrohomologie-vermittelte Verbindung von Enden, MMEJ). Die gezielte Beeinflussung anderer DSBR-Gene (KU70, KU80, RPA1C) führte zu Mutanten mit unerwartet starken Entwicklungsphänotypen. Diese Gene spielen eine Rolle beim Erhalt der Telomere, was auf einen möglichen Zusammenhang zwischen der Telomerlänge und der Stärke der Entwicklungsstörung bei Verlust der Telomerstruktur in Pflanzen hindeutet. Die Mutanten wurden in einem genetischen Hintergrund erzeugt, der über einen in den Plastiden lokalisierten IGT-Reporter verfügt, der nach Übertragung in den Zellkern Kanamycin-Resistenz vermittelt. In groß angelegten unabhängigen Experimenten wurde in lig4-Mutanten sowie in Linien, die für ein POLQ-Gen mit einer defekten Polymerase-Domäne (polqΔPol) kodieren, eine erhöhte GTR vom Chloroplasten zum Zellkern beobachtet. Dies zeigt, dass NHEJ oder MMEJ eine zweischneidige Beziehung zum IGT haben: Während übertragene Gene folglich über jeden der beiden Mechanismen integriert werden können, unterdrückt das gleichzeitige Vorhandensein beider Wege IGT in somatischen Wildtyp-Zellen, wodurch zum ersten Mal gezeigt wird, in welchem Ausmaß Kerngene die IGT-Häufigkeit in Pflanzen kontrollieren. Die erhöhte Verfügbarkeit von Doppelstrangbrüchen für die Integration könnte für die erhöhte IGT-Häufigkeit in den Mutanten verantwortlich sein. Darüber hinaus zeigt die Analyse des Zeitverlaufs, dass Gentransferereignisse (GT) in Abhängigkeit von der Zeit, die im Experiment unter Antibiotikaselektion verbracht wurde, linear akkumulieren, was beweist, dass es, anders als bisher angenommen, in somatischen IGT-Experimenten keine statische GTR gibt. Darüber hinaus scheint IGT in Gewebekulturexperimenten das Ergebnis eines Wettlaufs mit der Zeit um die Integration in das Kerngenom zu sein, der beginnt, wenn die Organellen-DNA in den Zellkern gelangt und eine vorübergehende Antibiotikaresistenz gewährt. Echte GT-Ereignisse und „Escapes“ (scheinbare Resistenz, ein vorläufiges Ausweichen vor der Kanamycin-Selektion) können zwei mögliche Ergebnisse dieses Wettlaufs sein: Die Fälle, in denen die Organellen-DNA integriert wird, werden als GT-Ereignisse gewertet, und in den Fällen, in denen die rechtzeitige Integration scheitert, kann die Antibiotikaresistenz nicht aufrechterhalten werden und sie werden als „Escape“ betrachtet. In den Mutanten verändern sich die Möglichkeiten zur Integration in das Kerngenom, wodurch sich das Gesamtverhältnis zwischen IGT- und „Escape“-Ereignissen ändert. Die hier erzeugten Ressourcen sind vielversprechende Ausgangspunkte für künftige Forschungen: (1) die Mutantensammlung, für die Untersuchung von weiteren Prozessen, die von der DNA-Reparatur in Pflanzen abhängen, (2) die Sammlung von GT-Linien, die aus den hier beschriebenen Experimenten gewonnen wurden, für die Untersuchung der Auswirkungen von DSBR-Mechanismen auf Integrationsmuster und Stabilität übertragener Gene und (3) der hier entwickelte Arbeitsablauf für die Mutantenerzeugung mittels CRISPR/Cas9, damit N. tabacum sein Potenzial als attraktives Modell für die Beantwortung komplexer biologischer Fragestellungen erfüllen kann. T2 - Genetische Kontrolle des intrazellulären Gentransfers durch DNA-Reparatur in N. tabacum KW - endosymbiosis KW - organelles KW - gene KW - transfer KW - DNA KW - repair KW - genome KW - editing KW - evolution KW - plant Y1 - 2023 ER - TY - THES A1 - Uflewski, Michal T1 - Characterizing the regulation of proton antiport across the thylakoid membrane N2 - Die Energie, die zum Antrieb photochemischer Reaktionen benötigt wird, stammt aus der Ladungstrennung an der Thylakoidmembran. Aufrgrund des Unterschieds in der Protonenkonzentration zwischen dem Stroma der Chloroplasten und dem Thylakoidlumen wird eine Protonenmotorische Kraft (pmf) erzeugt. Die pmf setzt sich aus dem Protonengradienten (ΔpH) und dem Membranpotential (ΔΨ) zusammen, die gemeinsam die ATP-Synthese antreiben. In der Natur schwankt die Energiemenge, die die Photosynthese antreibt, aufgrund häufiger Änderungen der Lichtintensität. Der Thylakoid-Ionentransport kann den Energiefluss durch einen Photosyntheseapparat an die Lichtverfügbarkeit anpassen, indem er die pmf-Zusammensetzung verändert. Die Dissipation von ΔΨ verringert die Ladungsrekombination am Photosystem II, so dass ein Anstieg der ΔpH-Komponente eine Rückkopplung zur Herabregulierung der Photosynthese auslösen kann. Der durch den K+-Austausch-Antiporter 3 (KEA3) gesteuerte K+/H+-Antiport reduziert den ΔpH-Anteil von pmf und dämpft dadurch das nicht-photochemische Quenching (NPQ). Infolgedessen erhöht sich die Photosyntheseeffizienz beim Übergang zu geringerer Lichtintensität. Ziel dieser Arbeit war es, Antworten auf Fragen zur Regulierung der KEA3-Aktivität und ihrer Rolle in der Pflanzenentwicklung zu finden. Die vorgestellten Daten zeigen, dass KEA3 in Pflanzen, denen der Chloroplasten-ATP-Synthase-Assembly-Faktor CGL160 fehlt und die eine verminderte ATP-Synthase-Aktivität aufweisen, eine zentrale Rolle bei der Regulierung der Photosynthese und des Pflanzenwachstums unter stationären Bedingungen spielt. Das Fehlen von KEA3 in der cgl160-Mutante führt zu einer starken Beeinträchtigung des Wachstums, da die Photosynthese aufgrund des erhöhten pH-abhängigen NPQs und des verringerten Elektronenflusses durch den Cytochrom b6f-Komplex eingeschränkt ist. Die Überexpression von KEA3 in der cgl160-Mutante erhöht die Ladungsrekombination im Photosystem II und fördert die Photosynthese. In Zeiten geringer ATP-Synthase-Aktivität profitieren die Pflanzen also von der KEA3-Aktivität. KEA3 unterliegt einer Dimerisierung über seinen regulatorischen C-Terminus (RCT). Der RCT reagiert auf Veränderungen der Lichtintensität, da die Pflanzen, die KEA3 ohne diese Domäne exprimieren, einen reduzierten Lichtschutzmechanismus bei Lichtintensitätsschwankungen aufweisen. Allerdings fixieren diese Pflanzen während der Photosynthese-Induktionsphase mehr Kohlenstoff als Gegenleistung für einen langfristigen Photoprotektor, was die regulierende Rolle von KEA3 in der Pflanzenentwicklung zeigt. Der KEA3-RCT ist dem Thylakoidstroma zugewandt, so dass seine Regulierung von lichtinduzierten Veränderungen in der Stroma-Umgebung abhängt. Die Regulierung der KEA3-Aktivität überschneidet sich mit den pH-Änderungen im Stroma, die bei Lichtschwankungen auftreten. Es hat sich gezeigt, dass ATP und ADP eine Affinität zum heterolog exprimierten KEA3 RCT haben. Eine solche Wechselwirkung verursacht Konformationsänderungen in der RCT-Struktur. Die Faltung der RCT-Liganden-Interaktion hängt vom pH-Wert der Umgebung ab. Mit einer Kombination aus Bioinformatik und In-vitro-Ansatz wurde die ATP-Bindungsstelle am RCT lokalisiert. Das Einfügen einer Punktmutation in der KEA3-RCT Bindungsstelle in planta führte zu einer Deregulierung der Antiporteraktivität beim Übergang zu wenig Licht. Die in dieser Arbeit vorgestellten Daten ermöglichten es uns, die Rolle von KEA3 bei der Anpassung der Photosynthese umfassender zu bewerten und Modelle zur Regulierung der KEA3-Aktivität während des Übergangs zwischen verschiedenen Lichtintensitäten vorzuschlagen. N2 - The energy required to drive photochemical reactions is derived from charge separation across the thylakoid membrane. As the consequence of difference in proton concentration between chloroplasts stroma and thylakoid lumen, a proton motive force (pmf) is generated. The pmf is composed out of the proton gradient (ΔpH) and membrane potential (ΔΨ), and together they drive the ATP synthesis. In nature, the amount of energy fueling photosynthesis varies due to frequent changes in the light intensity. Thylakoid ion transport can adapt the energy flow through a photosynthetic apparatus to the light availability by adjusting the pmf composition. Dissipation of ΔΨ reduces the charge recombination at the photosystem II, allowing for an increase in ΔpH component to trigger a feedback downregulation of photosynthesis. K+ Exchange Antiporter 3 (KEA3) driven K+/H+ antiport reduces the ΔpH fraction of pmf, thereby dampening a non-photochemical quenching (NPQ). As a result, it increases the photosynthesis efficiency during the transition to lower light intensity. This thesis aimed to find the answers for questions concerning KEA3 activity regulation and its role in plant development. Presented data shows that in plants lacking chloroplast ATP synthase assembly factor CGL160 with decreased ATP synthase activity, KEA3 has a pivotal role in photosynthesis regulation and plant growth during steady-state conditions. Lack of KEA3 in cgl160 mutant results in a strong growth impairment, as photosynthesis is limited due to increased pH-dependent NPQ and decreased electron flow through cytochrome b6f complex. Overexpression of KEA3 in cgl160 mutant increases charge recombination at photosystem II, promoting photosynthesis. Thus, during periods of low ATP synthase activity, plants benefit from KEA3 activity. The KEA3 undergoes dimerization via its regulatory C-terminus (RCT). The RCT responds to changes in light intensity as the plants expressing KEA3 without this domain show reduced photo-protective mechanism in light intensity transients. However, those plants fix more carbon during the photosynthesis induction phase as a trade-off for a long-term photoprotection, showing KEA3 regulatory role in plant development. The KEA3 RCT is facing thylakoid stroma, thus its regulation depends on light-induced changes in the stromal environment. KEA3 activity regulation overlaps with the stromal pH changes occurring during light fluctuations. The ATP and ADP has shown to have an affinity towards heterologously expressed KEA3 RCT. Such interaction causes conformational changes in RCT structure. The fold change of RCT-ligand interaction depends on the environmental pH value. With a combination of bioinformatics and in vitro approach, the ATP binding site at RCT was located. Introduction of binding site point mutation in planta KEA3 RCT resulted in antiporter activity deregulation during transition to low light. Together, the data presented in this thesis allowed us to assess more broadly a KEA3 role in photosynthesis adjustment and propose the models of KEA3 activity regulation throughout transition in light intensity. KW - plant KW - photosynthesis KW - thylakoid KW - ion transport KW - fluctuating light KW - Pflanze KW - Photosynthese KW - Thylakoid KW - Ionentransport KW - schwankendes Licht Y1 - 2021 ER - TY - THES A1 - Hoelscher, Matthijs Pieter T1 - The production of antimicrobial polypeptides in chloroplasts N2 - Plants are an attractive platform for the production of medicinal compounds because of their potential to generate large amounts of biomass cheaply. The use of chloroplast transformation is an attractive way to achieve the recombinant production of proteins in plants, because of the chloroplasts’ high capacity to produce foreign proteins in comparison to nuclear transformed plants. In this thesis, the production of two different types of antimicrobial polypeptides in chloroplasts is explored. The first example is the production of the potent HIV entry inhibitor griffithsin. Griffithsin has the potential to prevent HIV infections by blocking the entry of the virus into human cells. Here the use of transplastomic plants as an inexpensive production method for griffithsin was explored. Transplastomic plants grew healthily and were able to accumulate griffithsin to up to 5% of the total soluble protein. Griffithsin could easily be purified from tobacco leaf tissue and had a similarly high neutralization activity as griffithsin recombinantly produced in bacteria. Griffithsin could be purified from dried tobacco leaves, demonstrating that dried leaves could be used as a storable starting material for griffithsin purification, circumventing the need for immediate purification after harvest. The second example is the production of antimicrobial peptides (AMPs) that have the capacity to kill bacteria and are an attractive alternative to currently used antibiotics that are increasingly becoming ineffective. The production of antimicrobial peptides was considerably more challenging than the production of griffithsin. Small AMPs are prone to degradation in plastids. This problem was overcome by fusing AMPs to generate larger polypeptides. In one approach, AMPs were fused to each other to increase size and combine the mode of action of multiple AMPs. This improved the accumulation of AMPs but also resulted in impaired plant growth. This was solved by the use of two different inducible systems, which could largely restore plant growth. Fusions of multiple AMPs were insoluble and could not be purified. In addition to fusing AMPs to each other, the fusion of AMPs to small ubiquitin-like modifier (SUMO), was tested as an approach to improve the accumulation, facilitate purification, and reduce the toxicity of AMPs to chloroplasts. Fusion of AMPs to SUMO indeed increased accumulation while reducing the toxicity to the plants. SUMO fusions produced inside chloroplasts could be purified, and SUMO could be efficiently cleaved off with the SUMO protease. Such fusions therefore provide a promising strategy for the production of AMPs and other small polypeptides inside chloroplasts. KW - plastid transformation KW - Nicotiana tabacum KW - HIV KW - AIDS KW - antiviral agent KW - micorbicide KW - Griffithsin KW - chloroplast KW - antimicrobial peptide KW - AMP KW - recombinant production KW - transgenic KW - SUMO KW - inducible expression KW - anti bacterial KW - protein fusion KW - polypeptide KW - peptide KW - plant KW - molecular farming Y1 - 2020 ER - TY - JOUR A1 - Naseri, Gita A1 - Balazadeh, Salma A1 - Machens, Fabian A1 - Kamranfar, Iman A1 - Messerschmidt, Katrin A1 - Müller-Röber, Bernd T1 - Plant-Derived Transcription Factors for Orthologous Regulation of Gene Expression in the Yeast Saccharomyces cerevisiae JF - ACS synthetic biology N2 - Control of gene expression by transcription factors (TFs) is central in many synthetic biology projects for which a tailored expression of one or multiple genes is often needed. As TFs from evolutionary distant organisms are unlikely to affect gene expression in a host of choice, they represent excellent candidates for establishing orthogonal control systems. To establish orthogonal regulators for use in yeast (Saccharomyces cerevisiae), we chose TFs from the plant Arabidopsis thaliana. We established a library of 106 different combinations of chromosomally integrated TFs, activation domains (yeast GAL4 AD, herpes simplex virus VP64, and plant EDLL) and synthetic promoters harboring cognate cis regulatory motifs driving a yEGFP reporter. Transcriptional output of the different driver/reporter combinations varied over a wide spectrum, with EDLL being a considerably stronger transcription activation domain in yeast than the GAL4 activation domain, in particular when fused to Arabidopsis NAC TFs. Notably, the strength of several NAC-EDLL fusions exceeded that of the strong yeast TDH3 promoter by 6- to 10-fold. We furthermore show that plant TFs can be used to build regulatory systems encoded by centromeric or episomal plasmids. Our library of TF-DNA binding site combinations offers an excellent tool for diverse synthetic biology applications in yeast. KW - Arabidopsis thaliana KW - artificial transcription factor KW - NAC transcription factor KW - synthetic biology KW - plant Y1 - 2017 U6 - https://doi.org/10.1021/acssynbio.7b00094 SN - 2161-5063 VL - 6 SP - 1742 EP - 1756 PB - American Chemical Society CY - Washington ER -