TY - JOUR A1 - De Frenne, Pieter A1 - Brunet, Jorg A1 - Shevtsova, Anna A1 - Kolb, Annette A1 - Graae, Bente J. A1 - Chabrerie, Olivier A1 - Cousins, Sara Ao A1 - Decocq, Guillaume A1 - De Schrijver, An A1 - Diekmann, Martin A1 - Gruwez, Robert A1 - Heinken, Thilo A1 - Hermy, Martin A1 - Nilsson, Christer A1 - Stanton, Sharon A1 - Tack, Wesley A1 - Willaert, Justin A1 - Verheyen, Kris T1 - Temperature effects on forest herbs assessed by warming and transplant experiments along a latitudinal gradient JF - Global change biology N2 - Slow-colonizing forest understorey plants are probably not able to rapidly adjust their distribution range following large-scale climate change. Therefore, the acclimation potential to climate change within their actual occupied habitats will likely be key for their short-and long-term persistence. We combined transplant experiments along a latitudinal gradient with open-top chambers to assess the effects of temperature on phenology, growth and reproductive performance of multiple populations of slow-colonizing understorey plants, using the spring flowering geophytic forb Anemone nemorosa and the early summer flowering grass Milium effusum as study species. In both species, emergence time and start of flowering clearly advanced with increasing temperatures. Vegetative growth (plant height, aboveground biomass) and reproductive success (seed mass, seed germination and germinable seed output) of A. nemorosa benefited from higher temperatures. Climate warming may thus increase future competitive ability and colonization rates of this species. Apart from the effects on phenology, growth and reproductive performance of M. effusum generally decreased when transplanted southwards (e. g., plant size and number of individuals decreased towards the south) and was probably more limited by light availability in the south. Specific leaf area of both species increased when transplanted southwards, but decreased with open-top chamber installation in A. nemorosa. In general, individuals of both species transplanted at the home site performed best, suggesting local adaptation. We conclude that contrasting understorey plants may display divergent plasticity in response to changing temperatures which may alter future understorey community dynamics. KW - climate change KW - common garden experiment KW - forest understorey KW - latitude KW - local adaptation KW - open-top chambers KW - phenotypic plasticity KW - pot experiment Y1 - 2011 U6 - https://doi.org/10.1111/j.1365-2486.2011.02449.x SN - 1354-1013 VL - 17 IS - 10 SP - 3240 EP - 3253 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Weisse, Thomas A1 - Berendonk, Thomas U. A1 - Kamjunke, Norbert A1 - Moser, Michael A1 - Scheffel, U. A1 - Stadler, P. A1 - Weithoff, Guntram T1 - Significant habitat effects influence protist fitness evidence for local adaptation from acidic mining lakes JF - Ecosphere : the magazine of the International Ecology University N2 - It is currently controversially discussed if the same freshwater microorganisms occur worldwide wherever their required habitats are realized, i.e., without any adaptation to local conditions below the species level. We performed laboratory experiments with flagellates and ciliates from three acidic mining lakes (AML, pH similar to 2.7) to investigate if similar habitats may affect similar organisms differently. Such man-made lakes provide suitable ecosystem models to test for the significance of strong habitat selection. To this end, we analyzed the growth response of three protist taxa (three strains of the phytoflagellate Chlamydomonas acidophila, two isolates of the phytoflagellate Ochromonas and two species of the ciliate genus Oxytricha) by exposing them to lake water of their origin and from the two other AML in a cross-factorial design. Population growth rates were measured as a proxy for their fitness. Results revealed significant effects of strain, lake (= habitat), and strain X habitat interaction. In the environmentally most adverse AML, all three protist taxa were locally adapted. In conclusion, our study demonstrates that (1) the same habitat may affect strains of the same species differently and that (2) similar habitats may harbor ecophysiologically different strains or species. These results contradict the 'everything is everywhere' paradigm. KW - allopatric speciation KW - Chlamydomonas acidophila KW - ciliates KW - everything is everywhere KW - flagellates KW - freshwater microbes KW - habitat-species interaction KW - local adaptation KW - Ochromonas spp. KW - Oxytricha spp. Y1 - 2011 U6 - https://doi.org/10.1890/ES11-00157.1 SN - 2150-8925 VL - 2 IS - 12 PB - Wiley CY - Washington ER -