TY - JOUR A1 - Schmaelzlin, Elmar A1 - Moralejo, Benito A1 - Rutowska, Monika A1 - Monreal-Ibero, Ana A1 - Sandin, Christer A1 - Tarcea, Nicolae A1 - Popp, Juergen A1 - Roth, Martin M. T1 - Raman imaging with a fiber-coupled multichannel spectrograph JF - Sensors N2 - Until now, spatially resolved Raman Spectroscopy has required to scan a sample under investigation in a time-consuming step-by-step procedure. Here, we present a technique that allows the capture of an entire Raman image with only one single exposure. The Raman scattering arising from the sample was collected with a fiber-coupled high-performance astronomy spectrograph. The probe head consisting of an array of 20 x 20 multimode fibers was linked to the camera port of a microscope. To demonstrate the high potential of this new concept, Raman images of reference samples were recorded. Entire chemical maps were received without the need for a scanning procedure. KW - multichannel Raman spectroscopy KW - astronomy spectrograph KW - optical fiber bundle KW - Raman imaging Y1 - 2014 U6 - https://doi.org/10.3390/s141121968 SN - 1424-8220 VL - 14 IS - 11 SP - 21968 EP - 21980 PB - MDPI CY - Basel ER - TY - JOUR A1 - Palyulin, Vladimir V. A1 - Ala-Nissila, Tapio A1 - Metzler, Ralf ED - Metzler, Ralf T1 - Polymer translocation: the first two decades and the recent diversification JF - Soft matter N2 - Probably no other field of statistical physics at the borderline of soft matter and biological physics has caused such a flurry of papers as polymer translocation since the 1994 landmark paper by Bezrukov, Vodyanoy, and Parsegian and the study of Kasianowicz in 1996. Experiments, simulations, and theoretical approaches are still contributing novel insights to date, while no universal consensus on the statistical understanding of polymer translocation has been reached. We here collect the published results, in particular, the famous–infamous debate on the scaling exponents governing the translocation process. We put these results into perspective and discuss where the field is going. In particular, we argue that the phenomenon of polymer translocation is non-universal and highly sensitive to the exact specifications of the models and experiments used towards its analysis. KW - solid-state nanopores KW - single-stranded-dna KW - posttranslational protein translocation KW - anomalous diffusion KW - monte-carlo KW - structured polynucleotides KW - dynamics simulation KW - equation approach KW - osmotic-pressure KW - membrane channel Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-76266 SN - 1744-683X VL - 45 IS - 10 SP - 9016 EP - 9037 PB - the Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Jeon, Jae-Hyung A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf T1 - Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion JF - Physical chemistry, chemical physics : PCCP N2 - Anomalous diffusion is frequently described by scaled Brownian motion (SBM){,} a Gaussian process with a power-law time dependent diffusion coefficient. Its mean squared displacement is ?x2(t)? [similar{,} equals] 2K(t)t with K(t) [similar{,} equals] t[small alpha]-1 for 0 < [small alpha] < 2. SBM may provide a seemingly adequate description in the case of unbounded diffusion{,} for which its probability density function coincides with that of fractional Brownian motion. Here we show that free SBM is weakly non-ergodic but does not exhibit a significant amplitude scatter of the time averaged mean squared displacement. More severely{,} we demonstrate that under confinement{,} the dynamics encoded by SBM is fundamentally different from both fractional Brownian motion and continuous time random walks. SBM is highly non-stationary and cannot provide a physical description for particles in a thermalised stationary system. Our findings have direct impact on the modelling of single particle tracking experiments{,} in particular{,} under confinement inside cellular compartments or when optical tweezers tracking methods are used. KW - single-particle tracking KW - living cells KW - random-walks KW - subdiffusion KW - dynamics KW - nonergodicity KW - coefficients KW - transport KW - membrane KW - behavior Y1 - 2014 U6 - https://doi.org/10.1039/C4CP02019G VL - 30 IS - 16 SP - 15811 EP - 15817 PB - The Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Zhao, Qiang A1 - Dunlop, John William Chapman A1 - Qiu, Xunlin A1 - Huang, Feihe A1 - Zhang, Zibin A1 - Heyda, Jan A1 - Dzubiella, Joachim A1 - Antonietti, Markus A1 - Yuan, Jiayin T1 - An instant multi-responsive porous polymer actuator driven by solvent molecule sorption JF - Nature Communications N2 - Fast actuation speed, large-shape deformation and robust responsiveness are critical to synthetic soft actuators. A simultaneous optimization of all these aspects without trade-offs remains unresolved. Here we describe porous polymer actuators that bend in response to acetone vapour (24 kPa, 20 degrees C) at a speed of an order of magnitude faster than the state-of-the-art, coupled with a large-scale locomotion. They are meanwhile multi-responsive towards a variety of organic vapours in both the dry and wet states, thus distinctive from the traditional gel actuation systems that become inactive when dried. The actuator is easy-to-make and survives even after hydrothermal processing (200 degrees C, 24 h) and pressing-pressure (100 MPa) treatments. In addition, the beneficial responsiveness is transferable, being able to turn 'inert' objects into actuators through surface coating. This advanced actuator arises from the unique combination of porous morphology, gradient structure and the interaction between solvent molecules and actuator materials. Y1 - 2014 U6 - https://doi.org/10.1038/ncomms5293 SN - 2041-1723 VL - 5 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Zhang, Xiaoqing A1 - Zhang, Xinwu A1 - You, Qiong A1 - Sessler, Gerhard M. T1 - Low- cost, large- area, stretchable piezoelectric films based on irradiation- crosslinked poly ( propylene) JF - Macromolecular materials and engineering N2 - Low cost, large area, lightweight, stretchable piezoelectric films, based on space-charge electret with a foam structure (i.e., ferroelectrets or piezoelectrets), have been fabricated by using commercially available irradiation cross-linked poly(propylene) (IXPP) foam sheets. Piezoelectric d(33) coefficients are as high as 100pCN(-1). The piezoelectric performance in such IXPP films is well preserved for repeated strains of less than 10%. Piezoelectric d(33) coefficients are frequency independent in the range from 2 to 100Hz. Such new class materials may be applied in sensory skins, smart clothing, bio-inspired systems, microenergy harvesters, and so on. KW - crosslinked poly(propylene) KW - ferroelectret KW - piezoelectricity KW - stretchability Y1 - 2014 U6 - https://doi.org/10.1002/mame.201300161 SN - 1438-7492 SN - 1439-2054 VL - 299 IS - 3 SP - 290 EP - 295 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Kurfuerst, P. A1 - Feldmeier, Achim A1 - Krticka, Jiri T1 - Time-dependent modeling of extended thin decretion disks of critically rotating stars JF - Astronomy and astrophysics : an international weekly journal N2 - Context. During their evolution massive stars can reach the phase of critical rotation when a further increase in rotational speed is no longer possible. Direct centrifugal ejection from a critically or near-critically rotating surface forms a gaseous equatorial decretion disk. Anomalous viscosity provides the efficient mechanism for transporting the angular momentum outwards. The outer part of the disk can extend up to a very large distance from the parent star. Aims. We study the evolution of density, radial and azimuthal velocity, and angular momentum loss rate of equatorial decretion disks out to very distant regions. We investigate how the physical characteristics of the disk depend on the distribution of temperature and viscosity. Methods. We calculated stationary models using the Newton-Raphson method. For time-dependent hydrodynamic modeling we developed the numerical code based on an explicit finite difference scheme on an Eulerian grid including full Navier-Stokes shear viscosity. Results. The sonic point distance and the maximum angular momentum loss rate strongly depend on the temperature profile and are almost independent of viscosity. The rotational velocity at large radii rapidly drops accordingly to temperature and viscosity distribution. The total amount of disk mass and the disk angular momentum increase with decreasing temperature and viscosity. Conclusions. The time-dependent one-dimensional models basically confirm the results obtained in the stationary models as well as the assumptions of the analytical approximations. Including full Navier-Stokes viscosity we systematically avoid the rotational velocity sign change at large radii. The unphysical drop of the rotational velocity and angular momentum loss at large radii (present in some models) can be avoided in the models with decreasing temperature and viscosity. KW - stars: mass-loss KW - stars: evolution KW - stars: rotation KW - hydrodynamics Y1 - 2014 U6 - https://doi.org/10.1051/0004-6361/201424272 SN - 0004-6361 SN - 1432-0746 VL - 569 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Haakh, Harald R. A1 - Henkel, Carsten A1 - Spagnolo, Salvatore A1 - Rizzuto, Lucia A1 - Passante, Roberto T1 - Dynamical Casimir-Polder interaction between an atom and surface plasmons JF - Physical review : A, Atomic, molecular, and optical physics N2 - We investigate the time-dependent Casimir-Polder potential of a polarizable two-level atom placed near a surface of arbitrary material, after a sudden change in the parameters of the system. Different initial conditions are taken into account. For an initially bare ground-state atom, the time-dependent Casimir-Polder energy reveals how the atom is "being dressed" by virtual, matter-assisted photons. We also study the transient behavior of the Casimir-Polder interaction between the atom and the surface starting from a partially dressed state, after an externally induced change in the atomic level structure or transition dipoles. The Heisenberg equations are solved through an iterative technique for both atomic and field operators in the medium-assisted electromagnetic field quantization scheme. We analyze, in particular, how the time evolution of the interaction energy depends on the optical properties of the surface, in particular on the dispersion relation of surface plasmon polaritons. The physical significance and the limits of validity of the obtained results are discussed in detail. Y1 - 2014 U6 - https://doi.org/10.1103/PhysRevA.89.022509 SN - 1050-2947 SN - 1094-1622 VL - 89 IS - 2 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Mkrtchian, Vanik E. A1 - Henkel, Carsten T1 - On non-equilibrium photon distributions in the Casimir effect JF - Annalen der Physik N2 - The electromagnetic field in a typical geometry of the Casimir effect is described in the Schwinger-Keldysh formalism. The main result is the photon distribution function (Keldysh Green function) in any stationary state of the field. A two-plate geometry with a sliding interface in local equilibrium is studied in detail, and full agreement with the results of Rytov fluctuation electrodynamics is found. KW - Casimir effect KW - van der Waals interaction KW - quantum friction KW - nonequilibrium electrodynamics of nanosystems Y1 - 2014 U6 - https://doi.org/10.1002/andp.201300135 SN - 0003-3804 SN - 1521-3889 VL - 526 IS - 1-2 SP - 87 EP - 101 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Joulain, Karl A1 - Ben-Abdallah, Philippe A1 - Chapuis, Pierre-Olivier A1 - De Wilde, Y. A1 - Babuty, A. A1 - Henkel, Carsten T1 - Strong tip-sample coupling in thermal radiation scanning tunneling microscopy JF - Journal of quantitative spectroscopy & radiative transfer KW - Near-field thermal radiation KW - Infrared radiation KW - Local density of states KW - Scanning near-field optical microscopy KW - Tip-sample interactions KW - Local spectroscopy Y1 - 2014 U6 - https://doi.org/10.1016/j.jqsrt.2013.12.006 SN - 0022-4073 SN - 1879-1352 VL - 136 SP - 1 EP - 15 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Miedema, P. S. A1 - Beye, Martin A1 - Koennecke, R. A1 - Schiwietz, G. A1 - Föhlisch, Alexander T1 - The angular- and crystal-momentum transfer through electron-phonon coupling in silicon and silicon-carbide: similarities and differences JF - New journal of physics : the open-access journal for physics N2 - Electron-phonon scattering has been studied for silicon carbide (6H-SiC) with resonant inelastic x-ray scattering at the silicon 2p edge. The observed electron-phonon scattering yields a crystal momentum transfer rate per average phonon in 6H-SiC of 1.8 fs(-1) while it is 0.2 fs(-1) in crystalline silicon. The angular momentum transfer rate per average phonon for 6H-SiC is 0.1 fs(-1), which is much higher than 0.0035 fs(-1) obtained for crystalline silicon in a previous study. The higher electron-phonon scattering rates in 6H-SiC are a result of the larger electron localization at the silicon atoms in 6H-SiC as compared to crystalline silicon. While delocalized valence electrons can screen effectively (part of) the electron-phonon interaction, this effect is suppressed for 6H-SiC in comparison to crystalline silicon. Smaller contributions to the difference in electron-phonon scattering rates between 6H-SiC and silicon arise from the lower atomic mass of carbon versus silicon and the difference in local symmetry. KW - electron-phonon scattering KW - 6H-SiC KW - RIXS Y1 - 2014 U6 - https://doi.org/10.1088/1367-2630/16/9/093056 SN - 1367-2630 VL - 16 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Godec, Aljaz A1 - Bauer, Maximilian A1 - Metzler, Ralf T1 - Collective dynamics effect transient subdiffusion of inert tracers in flexible gel networks JF - New journal of physics : the open-access journal for physics N2 - Based on extensive Brownian dynamics simulations we study the thermal motion of a tracer bead in a cross-linked, flexible gel in the limit when the tracer particle size is comparable to or even larger than the equilibrium mesh size of the gel. The analysis of long individual trajectories of the tracer demonstrates the existence of pronounced transient anomalous diffusion. From the time averaged mean squared displacement and the time averaged van Hove correlation functions we elucidate the many-body origin of the non-Brownian tracer bead dynamics. Our results shed new light onto the ongoing debate over the physical origin of steric tracer interactions with structured environments. KW - anomalous diffusion KW - gel network KW - van Hove correlation Y1 - 2014 U6 - https://doi.org/10.1088/1367-2630/16/9/092002 SN - 1367-2630 VL - 16 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Baushev, Anton N. T1 - Relaxation of dark matter halos: how to match observational data? JF - Astronomy and astrophysics : an international weekly journal N2 - We show that moderate energy relaxation in the formation of dark matter halos invariably leads to profiles that match those observed in the central regions of galaxies. The density profile of the central region is universal and insensitive to either the seed perturbation shape or the details of the relaxation process. The profile has a central core; the multiplication of the central density by the core radius is almost independent of the halo mass, in accordance with observations. In the core area the density distribution behaves as an Einasto profile with low index (n similar to 0.5); it has an extensive region with rho proportional to r(-2) at larger distances. This is exactly the shape that observations suggest for the central region of galaxies. On the other hand, this shape does not fit the galaxy cluster profiles. A possible explanation of this fact is that the relaxation is violent in the case of galaxy clusters; however, it is not violent enough when galaxies or smaller dark matter structures are considered. We discuss the reasons for this. KW - dark matter KW - Galaxy: structure KW - Galaxy: formation KW - astroparticle physics KW - methods: analytical Y1 - 2014 U6 - https://doi.org/10.1051/0004-6361/201322730 SN - 0004-6361 SN - 1432-0746 VL - 569 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Kliem, Bernhard A1 - Toeroek, Tibor A1 - Titov, Viacheslav S. A1 - Lionello, Roberto A1 - Linker, Jon A. A1 - Liu, Rui A1 - Liu, Chang A1 - Wang, Haimin T1 - Slow rise and partial eruption of a double-decker filament. II. A double flux rope model JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Force-free equilibria containing two vertically arranged magnetic flux ropes of like chirality and current direction are considered as a model for split filaments/prominences and filament-sigmoid systems. Such equilibria are constructed analytically through an extension of the methods developed in Titov & Demoulin and numerically through an evolutionary sequence including shear flows, flux emergence, and flux cancellation in the photospheric boundary. It is demonstrated that the analytical equilibria are stable if an external toroidal (shear) field component exceeding a threshold value is included. If this component decreases sufficiently, then both flux ropes turn unstable for conditions typical of solar active regions, with the lower rope typically becoming unstable first. Either both flux ropes erupt upward, or only the upper rope erupts while the lower rope reconnects with the ambient flux low in the corona and is destroyed. However, for shear field strengths staying somewhat above the threshold value, the configuration also admits evolutions which lead to partial eruptions with only the upper flux rope becoming unstable and the lower one remaining in place. This can be triggered by a transfer of flux and current from the lower to the upper rope, as suggested by the observations of a split filament in Paper I. It can also result from tether-cutting reconnection with the ambient flux at the X-type structure between the flux ropes, which similarly influences their stability properties in opposite ways. This is demonstrated for the numerically constructed equilibrium. KW - instabilities KW - magnetohydrodynamics (MHD) KW - Sun: coronal mass ejections (CMEs) KW - Sun: filaments, prominences KW - Sun: flares Y1 - 2014 U6 - https://doi.org/10.1088/0004-637X/792/2/107 SN - 0004-637X SN - 1538-4357 VL - 792 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Goychuk, Igor A1 - Kharchenko, Vasyl O. T1 - Anomalous features of diffusion in corrugated potentials with spatial correlations: Faster than normal, and other surprises JF - Physical review letters N2 - Normal diffusion in corrugated potentials with spatially uncorrelated Gaussian energy disorder famously explains the origin of non-Arrhenius exp[-sigma(2)/(k(B)T(2))] temperature dependence in disordered systems. Here we show that unbiased diffusion remains asymptotically normal also in the presence of spatial correlations decaying to zero. However, because of a temporal lack of self-averaging, transient subdiffusion emerges on the mesoscale, and it can readily reach macroscale even for moderately strong disorder fluctuations of sigma similar to 4 - 5k(B)T. Because of its nonergodic origin, such subdiffusion exhibits a large scatter in single-trajectory averages. However, at odds with intuition, it occurs essentially faster than one expects from the normal diffusion in the absence of correlations. We apply these results to diffusion of regulatory proteins on DNA molecules and predict that such diffusion should be anomalous, but much faster than earlier expected on a typical length of genes for a realistic energy disorder of several room k(B)T, or merely 0.05-0.075 eV. Y1 - 2014 U6 - https://doi.org/10.1103/PhysRevLett.113.100601 SN - 0031-9007 SN - 1079-7114 VL - 113 IS - 10 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - de Carvalho, Sidney J. A1 - Metzler, Ralf A1 - Cherstvy, Andrey G. T1 - Critical adsorption of polyelectrolytes onto charged Janus nanospheres JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Based on extensive Monte Carlo simulations and analytical considerations we study the electrostatically driven adsorption of flexible polyelectrolyte chains onto charged Janus nanospheres. These net-neutral colloids are composed of two equally but oppositely charged hemispheres. The critical binding conditions for polyelectrolyte chains are analysed as function of the radius of the Janus particle and its surface charge density, as well as the salt concentration in the ambient solution. Specifically for the adsorption of finite-length polyelectrolyte chains onto Janus nanoparticles, we demonstrate that the critical adsorption conditions drastically differ when the size of the Janus particle or the screening length of the electrolyte are varied. We compare the scaling laws obtained for the adsorption-desorption threshold to the known results for uniformly charged spherical particles, observing significant disparities. We also contrast the changes to the polyelectrolyte chain conformations close to the surface of the Janus nanoparticles as compared to those for simple spherical particles. Finally, we discuss experimentally relevant physicochemical systems for which our simulations results may become important. In particular, we observe similar trends with polyelectrolyte complexation with oppositely but heterogeneously charged proteins. Y1 - 2014 U6 - https://doi.org/10.1039/c4cp02207f SN - 1463-9076 SN - 1463-9084 VL - 16 IS - 29 SP - 15539 EP - 15550 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Palyulin, Vladimir V. A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf T1 - Space-fractional Fokker-Planck equation and optimization of random search processes in the presence of an external bias JF - Journal of statistical mechanics: theory and experiment N2 - Based on the space-fractional Fokker-Planck equation with a delta-sink term, we study the efficiency of random search processes based on Levy flights with power-law distributed jump lengths in the presence of an external drift, for instance, an underwater current, an airflow, or simply the preference of the searcher based on prior experience. While Levy flights turn out to be efficient search processes when the target is upstream relative to the starting point, in the downstream scenario, regular Brownian motion turns out to be advantageous. This is caused by the occurrence of leapovers of Levy flights, due to which Levy flights typically overshoot a point or small interval. Studying the solution of the fractional Fokker-Planck equation, we establish criteria when the combination of the external stream and the initial distance between the starting point and the target favours Levy flights over the regular Brownian search. Contrary to the common belief that Levy flights with a Levy index alpha = 1 (i.e. Cauchy flights) are optimal for sparse targets, we find that the optimal value for alpha may range in the entire interval (1, 2) and explicitly include Brownian motion as the most efficient search strategy overall. KW - driven diffusive systems (theory) KW - fluctuations (theory) KW - stochastic processes (theory) KW - diffusion Y1 - 2014 U6 - https://doi.org/10.1088/1742-5468/2014/11/P11031 SN - 1742-5468 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Heuer, Axel A1 - Raabe, S. A1 - Menzel, Ralf T1 - Phase memory across two single-photon interferometers including wavelength conversion JF - Physical review : A, Atomic, molecular, and optical physics N2 - Spontaneous parametric down-conversion (SPDC) in a nonlinear crystal generates two single photons (signal and idler) with random phases. Thus, no first-order interference between them occurs. However, coherence can be induced in a cascaded setup of two crystals if, e.g., the idler modes of both crystals are aligned to be indistinguishable. Due to the effect of phase memory it is found that the first-order interference of the signal beams can be controlled by the phase delay between the pump beams. Even for pump photon delays much larger than the coherence length of the SPDC photons, the visibility is above 90%. The high visibilities reported here prove an almost perfect phase memory effect across the two interferometers for the pump and the signal photon modes. Y1 - 2014 U6 - https://doi.org/10.1103/PhysRevA.90.045803 SN - 1050-2947 SN - 1094-1622 VL - 90 IS - 4 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Gerhardt, Matthias A1 - Ecke, Mary A1 - Walz, Michael A1 - Stengl, Andreas A1 - Beta, Carsten A1 - Gerisch, Günther T1 - Actin and PIP3 waves in giant cells reveal the inherent length scale of an excited state JF - Journal of cell science N2 - The membrane and actin cortex of a motile cell can autonomously differentiate into two states, one typical of the front, the other of the tail. On the substrate-attached surface of Dictyostelium discoideum cells, dynamic patterns of front-like and tail-like states are generated that are well suited to monitor transitions between these states. To image large-scale pattern dynamics independently of boundary effects, we produced giant cells by electric-pulse-induced cell fusion. In these cells, actin waves are coupled to the front and back of phosphatidylinositol (3,4,5)-trisphosphate (PIP3)-rich bands that have a finite width. These composite waves propagate across the plasma membrane of the giant cells with undiminished velocity. After any disturbance, the bands of PIP3 return to their intrinsic width. Upon collision, the waves locally annihilate each other and change direction; at the cell border they are either extinguished or reflected. Accordingly, expanding areas of progressing PIP3 synthesis become unstable beyond a critical radius, their center switching from a front-like to a tail-like state. Our data suggest that PIP3 patterns in normal-sized cells are segments of the self-organizing patterns that evolve in giant cells. KW - Actin waves KW - PIP3 signals KW - Excitable systems KW - Cell polarity KW - Cell fusion Y1 - 2014 U6 - https://doi.org/10.1242/jcs.156000 SN - 0021-9533 SN - 1477-9137 VL - 127 IS - 20 SP - 4507 EP - 4517 PB - Company of Biologists Limited CY - Cambridge ER - TY - JOUR A1 - Goychuk, Igor T1 - Life and death of stationary linear response in anomalous continuous time random walk dynamics JF - Communications in theoretical physics : a series journal of the Chinese Physical Society (A) N2 - Linear theory of stationary response in systems at thermal equilibrium requires to find equilibrium correlation function of unperturbed responding system. Studies of the response of the systems exhibiting anomalously slow dynamics are often based on the continuous time random walk description (CTRW) with divergent mean waiting times. The bulk of the literature on anomalous response contains linear response functions like one by Cole-Cole calculated from such a CTRW theory and applied to systems at thermal equilibrium. Here we show within a fairly simple and general model that for the systems with divergent mean waiting times the stationary response at thermal equilibrium is absent, in accordance with some recent studies. The absence of such stationary response (or dying to zero non-stationary response in aging experiments) would confirm CTRW with divergent mean waiting times as underlying physical relaxation mechanism, but reject it otherwise. We show that the absence of stationary response is closely related to the breaking of ergodicity of the corresponding dynamical variable. As an important new result, we derive a generalized Cole-Cole response within ergodic CTRW dynamics with finite waiting time. Moreover, we provide a physically reasonable explanation of the origin and wide presence of 1/f noise in condensed matter for ergodic dynamics close to normal, rather than strongly deviating. KW - random walks KW - anomalous response and relaxation KW - stationarity KW - aging KW - 1/f noise Y1 - 2014 SN - 0253-6102 SN - 1572-9494 VL - 62 IS - 4 SP - 497 EP - 504 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Meibohm, Jan A1 - Schreck, Simon A1 - Wernet, Philippe T1 - Temperature dependent soft x-ray absorption spectroscopy of liquids JF - Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques N2 - A novel sample holder is introduced which allows for temperature dependent soft x-ray absorption spectroscopy of liquids in transmission mode. The setup is based on sample cells with x-ray transmissive silicon nitride windows. A cooling circuit allows for temperature regulation of the sample liquid between -10 degrees C and +50 degrees C. The setup enables to record soft x-ray absorption spectra of liquids in transmission mode with a temperature resolution of 0.5K and better. Reliability and reproducibility of the spectra are demonstrated by investigating the characteristic temperature-induced changes in the oxygen K-edge x-ray absorption spectrum of liquid water. These are compared to the corresponding changes in the oxygen K-edge spectra from x-ray Raman scattering. (C) 2014 AIP Publishing LLC. Y1 - 2014 U6 - https://doi.org/10.1063/1.4896977 SN - 0034-6748 SN - 1089-7623 VL - 85 IS - 10 PB - American Institute of Physics CY - Melville ER -