TY - THES A1 - Devers, Emanuel T1 - Phosphate homeostasis and novel microRNAs are involved in the regulation of the arbuscular mycorrhizal symbiosis in Medicago truncatula T1 - Die Phosphat-Homöostase und neue mikroRNAs sind in die Regulation der arbuskulären Mykorrhiza in Medicago truncatula involviert N2 - Die arbuskuläre Mykorrhiza ist die wahrscheinlich älteste Form der Wurzelsymbiosen zwischen Pflanzen und Pilzen und hat sich vor 420 Millionen Jahren entwickelt. In dieser Symbiose, die zwischen nahezu allen Landpflanzen und Pilzen des Reiches Glomeromycota ausgebildet wird, versorgt der Pilz die Pflanze mit Nährstoffen, wobei die verbesserte Versorgung mit Phosphat für die Pflanze sicher den größten Vorteil darstellt. Im Gegenzug erhält der Pilz Zucker, welche die Pflanze aus der Photosynthese bereitstellt. Zu hohe Phosphatkonzentrationen im Boden oder Dünger führen allerdings zu einer Verringerung in der Ausprägung der arbuskulären Mykorrhiza. Diese Unterdrückung der Symbiose wird nicht durch eine lokale Reaktion der Wurzeln ausgelöst, sondern in erster Linie durch einen hohen Phosphatgehalt im Pflanzenspross. Somit handelt es sich also um eine systemische, also dem Gesamtsystem „Pflanze“ betreffende Antwort. Die molekularen Mechanismen dieser Anpassung sind noch wenig bekannt und sind vor allem für die Agrarwirtschaft von besonderem Interesse. Eine Mikro-RNA (miRNA) des bereits bekannten Phosphathomöostasesignalwegs (PHR1-miRNA399-PHO2 Signalweg) akkumuliert verstärkt in mykorrhizierten Wurzeln. Das deutet daraufhin, dass dieser Signalweg und diese miRNA eine wichtige Rolle in der Regulation der arbuskulären Mykorrhiza spielen. Ziel dieser Studie war es neue Einblicke in die molekularen Mechanismen, die zur Unterdrückung der arbuskulären Mykorrhiza bei hohen Phosphatkonzentrationen führen, zu gewinnen. Dabei sollte der Einfluss von PHO2, sowie von miRNAs in dieser Symbiose genauer untersucht werden. Ein funktionelles Ortholog von PHO2, MtPho2, wurde in der Pflanze Medicago truncatula identifiziert. MtPho2-Mutanten, welche nicht mehr in der Lage waren ein funktionales PHO2 Protein zu exprimieren, zeigten schnellere Kolonisierung durch den AM-Pilz. Jedoch wurde auch in den mtpho2-Mutanten die Symbiose durch hohe Phosphatkonzentrationen unterdrückt. Dies bedeutet, dass PHO2 und somit der PHR1-miRNA399-PHO2 Signalweg eine wichtige Funktion während der fortschreitenden Kolonisierung der Wurzel durch den Pilz hat, aber und weitere Mechanismen in der Unterdückung der Symbiose bei hohen Phosphatkonzentrationen beteiligt sein müssen. Die Analyse von Transkriptionsprofilen von Spross- und Wurzeln mittels Microarrays zeigte, dass die Unterdrückung der AM Symbiose durch hohe Phosphatkonzentrationen möglicherweise auf eine Unterdrückung der Expression einer Reihe symbiosespezifischer Gene im Spross der Pflanze beruht. Um die Rolle weiterer miRNA in der AM Symbiose zu untersuchen, wurden mittels einer Hochdurchsatz-Sequenzierung 243 neue und 181 aus anderen Pflanzen bekannte miRNAs in M. truncatula entdeckt. Zwei dieser miRNAs, miR5229 und miR160f*, sind ausschließlich während der arbuskulären Mykorrhiza zu finden und weitere miRNAs werden während dieser Symbiose verstärkt gebildet. Interessanterweise führen einige dieser miRNAs zum Abbau von Transkripten, die eine wichtige Funktion in der arbuskulären Mykorrhiza und Wurzelknöllchensymbiose besitzen. Die Ergebnisse dieser Studie liefern eine neue Grundlage für die Untersuchung von regulatorischen Netzwerken, die zur zellulären Umprogrammierung während der Interaktion zwischen Pflanzen und arbuskulären Mykorrhiza-Pilzen bei verschiedenen Phosphatbedingungen führen. N2 - AM symbiosis has a positive influence on plant P-nutrition and growth, but little is known about the molecular mechanism of the symbiosis adaptation to different phosphate conditions. The recently described induction of several pri-miR399 transcripts in mycorrhizal shoots and subsequent accumulation of mature miR399 in mycorrhizal roots indicates that local PHO2 expression must be controlled during symbiosis, presumably in order to sustain AM symbiosis development, in spite of locally increased Pi-concentration. A reverse genetic approach used in this study demonstrated that PHO2 and thus the PHR1-miR399-PHO2 signaling pathway, is involved in certain stages of progressive root colonization. In addition, a transcriptomic approach using a split-root system provided a comprehensive insight into the systemic transcriptional changes in mycorrhizal roots and shoots of M. truncatula in response to high phosphate conditions. With regard to the transcriptional responses of the root system, the results indicate that, although the colonization is drastically reduced, AM symbiosis is still functional at high Pi concentrations and might still be beneficial to the plant. Additionally, the data suggest that a specific root-borne mycorrhizal signal systemically induces protein synthesis, amino acid metabolism and photosynthesis at low Pi conditions, which is abolished at high Pi conditions. MiRNAs, such as miR399, are involved in long-distance signaling and are therefore potential systemic signals involved in AM symbiosis. A deep-sequencing approach identified 243 novel miRNAs in the root tissue of M. truncatula. Read-count analysis, qRT-PCR measurements and in situ hybridizations clearly indicated a regulation of miR5229a/b, miR5204, miR160f*, miR160c, miR169 and miR169d*/l*/m*/e.2* during arbuscular mycorrhizal symbiosis. Moreover, miR5204* represses a GRAS TF, which is specifically transcribed in mycorrhizal roots. Since miR5204* is induced by high Pi it might represent a further Pi status-mediating signal beside miR399. This study provides additional evidence that MtNsp2, a key regulator of symbiosis-signaling, is regulated and presumably spatially restricted by miR171h cleavage. In summary, a repression of mycorrhizal root colonization at high phosphate status is most likely due to a repression of the phosphate starvation responses and the loss of beneficial responses in mycorrhizal shoots. These findings provide a new basis for investigating the regulatory network leading to cellular reprogramming during interaction between plants, arbuscular mycorrhizal fungi and different phosphate conditions. KW - Phosphat KW - miRNA KW - Symbiose KW - Medicago KW - phosphate KW - miRNA KW - symbiosis KW - Medicago Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-55572 ER - TY - THES A1 - Ott, Thomas T1 - Functional genomics of nodulins in the model legume Lotus japonicus T1 - Funktionelle Genomanalyse von Nodulinen der Modell-Leguminose Lotus japonicus N2 - During this PhD project three technical platforms were either improved or newly established in order to identify interesting genes involved in SNF, validate their expression and functionally characterise them. An existing 5.6K cDNA array (Colebatch et al., 2004) was extended to produce the 9.6K LjNEST array, while a second array, the 11.6K LjKDRI array, was also produced. Furthermore, the protocol for array hybridisation was substantially improved (Ott et al., in press). After functional classification of all clones according to the MIPS database and annotation of their corresponding tentative consensus sequence (TIGR) these cDNA arrays were used by several international collaborators and by our group (Krusell et al., 2005; in press). To confirm results obtained from the cDNA array analysis different sets of cDNA pools were generated that facilitate rapid qRT-PCR analysis of candidate gene expression. As stable transformation of Lotus japonicus takes several months, an Agrobacterium rhizogenes transformation system was established in the lab and growth conditions for screening transformants for symbiotic phenotypes were improved. These platforms enable us to identify genes, validate their expression and functionally characterise them in the minimum of time. The resources that I helped to establish, were used in collaboration with other people to characterise several genes like the potassium transporter LjKup and the sulphate transporter LjSst1, that were transcriptionally induced in nodules compared to uninfected roots, in more detail (Desbrosses et al., 2004; Krusell et al., 2005). Another gene that was studied in detail was LjAox1. This gene was identified during cDNA array experiments and detailed expression analysis revealed a strong and early induction of the gene during nodulation with high expression in young nodules which declines with the age of the nodule. Therefore, LjAox1 is an early nodulin. Promoter:gus fusions revealed an LjAox1 expression around the nodule endodermis. The physiological role of LjAox1 is currently being persued via RNAi. Using RNA interference, the synthesis of all symbiotic leghemoglobins was silenced simultaneously in Lotus japonicus. As a result, growth of LbRNAi lines was severely inhibited compared to wild-type plants when plants were grown under symbiotic conditions in the absence of mineral nitrogen. The nodules of these plants were arrested in growth 14 post inoculation and lacked the characteristic pinkish colour. Growing these transgenic plants in conditions where reduced nitrogen is available for the plant led to normal plant growth and development. This demonstrates that leghemoglobins are not required for plant development per se, and proves for the first time that leghemoglobins are indispensable for symbiotic nitrogen fixation. Absence of leghemoglobins in LbRNAi nodules led to significant increases in free-oxygen concentrations throughout the nodules, a decrease in energy status as reflected by the ATP/ADP ratio, and an absence of the bacterial nitrogenase protein. The bacterial population within nodules of LbRNAi plants was slightly reduced. Alterations of plant nitrogen and carbon metabolism in LbRNAi nodules was reflected in changes in amino acid composition and starch deposition (Ott et al., 2005). These data provide strong evidence that nodule leghemoglobins function as oxygen transporters that facilitate high flux rates of oxygen to the sites of respiration at low free oxygen concentrations within the infected cells. N2 - Pflanzen der Ordnung der Leguminosen sind von weltweiter Bedeutung für Landwirtschaft und die allgemeine Nährstoffzusammensetzung von Böden. Die physiologische Besonderheit der Leguminosen liegt in ihrer Fähigkeit begründet, zusammen mit Bakterien, den sogenannten Rhizobien, eine Symbiose einzugehen, im Zuge derer es möglich wird, molekularen Luftstickstoff zu binden. Dieser biochemische Prozess findet in neu gebildeten Pflanzenorganen, den sogenannten Wurzelknöllchen statt. In den Pflanzenwissenschaften werden Gene, die im Zuge der Infektion von Leguminosen mit Rhizobien reguliert werden und für den Entwicklungsprozess der Knöllchen eine wichtige Rolle zu spielen scheinen, als Noduline bezeichnet. Mit Hilfe von sogenannten Hochdurchsatzverfahren ist es in den letzten Jahren möglich geworden, die differentielle Expression von Tausenden von Genen gleichzeitig zu beobachten. Zu diesen Verfahren gehören sogenannte cDNA Arrays. Im Zuge dieser Doktorarbeit wurden die weltweit zweitgrößten cDNA Arrays für die Modell-Leguminose Hornklee (Lotus japonicus), der in unserer Gruppe als Untersuchungsobjekt verwendet wird, entwickelt. Mit Hilfe dieser Methode ist es uns möglich, die Regulation von etwa 15.000 Genen gleichzeitig zu untersuchen. Im Zuge von Untersuchungen, die sich mit der Entwicklung von Wurzelknöllchen in Lotus japonicus beschäftigten wurde ein Nodulin, dessen Existenz früher schon einmal beschrieben wurde, noch einmal bestätigt und die Funktion dieses Genes genauer untersucht. Es kodiert für das Enzym Vitamin C Oxidase, das unter Verwendung von molekularem Sauerstoff reduziertes Vitamin C zu einer anderen Form, dem Dehydroascorbat, oxidiert. Dabei wird Wasserstoffperoxid gebildet. Es konnte gezeigt werden, dass sich die Transkription dieses Gens in infizierten Wurzeln kontinuierlich im Verlauf der Symbiose erhöht, jedoch ist die Transkription in jungen Wurzelknöllchen höher als in alten. Darüber hinaus ist es in nur einer Zellschicht der Wurzelknöllchen, die sehr wichtig für die Entwicklung und tatsächliche Funktion der Knöllchen ist, aktiv. Aus den Beobachtungen kann geschlossen werden, dass dieses Gen eine wichtige Funktion in der Entwicklung der Knöllchen zu spielen scheint und vermutlich zur Zellstreckung und Zellteilung in dieser speziellen Zellschicht beiträgt. In einem zweiten Teil der Arbeit wurde sich einem zweiten und dem wohl wichtigsten Nodulin der Leguminosen, dem Leghämoglobin, gewidmet. Leghämoglobin ist dem menschlichen Blutbestandteil Hämoglobin sehr ähnlich und erfüllt dieselbe Aufgabe: es bindet Sauerstoff. Dieser Prozess ist für Leguminosen von erheblicher Bedeutung, da die bereits beschriebene Fixierung von molekularem Luftstickstoff durch ein bakterielles Enzym katalysiert wird, das extrem sauerstoffempfindlich ist. Leghämoglobine gelten unbestritten als die am besten charakterisierten Einweiße aus Wurzelknöllchen und Wissenschaftler behaupten seit fast 40 Jahren, dass sie essentiell für die Funktion der Knöllchen sind. Doch dies wurde bis jetzt nie bewiesen. Mit Hilfe einer neuen Methode, die die spezifische Bildung von Eiweißen verhindert, war es uns möglich, die Synthese von Leghämoglobin in Lotus japonicus vollkommen zu unterdrücken. In Folge dessen zeigen die transgenen Pflanzen deutliche Nährstoffmangelerscheinungen, wenn sie ohne zusätzlichen Stickstoff aber zusammen mit Rhizobien angezogen werden. Sie können zwar Wurzelknöllchen bilden, jedoch sind diese kleiner und haben nicht die charakteristische rötliche Farbe, die bei unveränderten Pflanzen gefunden wird. Der Phänotyp dieser transgenen Pflanzen wird ganz eindeutig durch ihre Unfähigkeit hervorgerufen, Luftstickstoff fixieren zu können. Der Grund dafür ist das Fehlen des bakteriellen Enzyms, das für die Fixierung verantwortlich ist. Dieser Verlust wird durch erhöhte Sauerstoffgehalte in den Knöllchen verursacht. Außerdem konnten durch weitere Untersuchungen eine der vermuteten Funktionsmechanismen von Leghämoglobin bestätigt werden. Diese hier präsentierten Untersuchungen beweisen erstmalig die jahrzehnte alte Hypothese, dass Leghämoglobine essentiell für die Stickstofffixierung in Leguminosen sind. KW - Lotus japonicus KW - DNS-Chip KW - Leghämoglobin KW - Redoxreaktion KW - Redoxsystem KW - Redoxine KW - Ascorbat-Oxidase KW - Vitamin C KW - Hülsenfrüchtler KW - Rhizobium KW - Nodulin KW - hairy root Transformation KW - Real Time PCR KW - Lotus japonicus KW - nodulin KW - cDNA array KW - leghemoglobin KW - redox metabolism KW - oxygen transport KW - ascorbate oxidase KW - legume KW - symbiosis KW - nitrogen fixation Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-5298 ER -