TY - THES A1 - Dey, Saptarshi T1 - Tectonic and climatic control on the evolution of the Himalayan mountain front T1 - Tektonische und klimatische Kontrolle über die Entwicklung der Himalaya-Gebirgsfront BT - a case study from the Kangra intermontane basin and the Dhauladhar range in the Northwestern Himalaya N2 - Variations in the distribution of mass within an orogen may lead to transient sediment storage, which in turn might affect the state of stress and the level of fault activity. Distinguishing between different forcing mechanisms causing variations of sediment flux and tectonic activity, is therefore one of the most challenging tasks in understanding the spatiotemporal evolution of active mountain belts. The Himalayan mountain belt is one of the most significant Cenozoic collisional mountain belt, formed due to collision between northward-bound Indian Plate and the Eurasian Plate during the last 55-50 Ma. Ongoing convergence of these two tectonic plates is accommodated by faulting and folding within the Himalayan arc-shaped orogen and the continued lateral and vertical growth of the Tibetan Plateau and mountain belts adjacent to the plateau as well as regions farther north. Growth of the Himalayan orogen is manifested by the development of successive south-vergent thrust systems. These thrust systems divide the orogen into different morphotectonic domains. From north to south these thrusts are the Main Central Thrust (MCT), the Main Boundary Thrust (MBT) and the Main Frontal Thrust (MFT). The growing topography interacts with moisture-bearing monsoonal winds, which results in pronounced gradients in rainfall, weathering, erosion and sediment transport toward the foreland and beyond. However, a fraction of this sediment is trapped and transiently stored within the intermontane valleys or ‘dun’s within the lower-elevation foothills of the range. Improved understanding of the spatiotemporal evolution of these sediment archives could provide a unique opportunity to decipher the triggers of variations in sediment production, delivery and storage in an actively deforming mountain belt and support efforts to test linkages between sediment volumes in intermontane basins and changes in the shallow crustal stress field. As sediment redistribution in mountain belts on timescales of 102-104 years can effect cultural characteristics and infrastructure in the intermontane valleys and may even impact the seismotectonics of a mountain belt, there is a heightened interest in understanding sediment-routing processes and causal relationships between tectonism, climate and topography. It is here at the intersection between tectonic processes and superposed climatic and sedimentary processes in the Himalayan orogenic wedge, where my investigation is focused on. The study area is the intermontane Kangra Basin in the northwestern Sub-Himalaya, because the characteristics of the different Himalayan morphotectonic provinces are well developed, the area is part of a region strongly influenced by monsoonal forcing, and the existence of numerous fluvial terraces provides excellent strain markers to assess deformation processes within the Himalayan orogenic wedge. In addition, being located in front of the Dhauladhar Range the region is characterized by pronounced gradients in past and present-day erosion and sediment processes associated with repeatedly changing climatic conditions. In light of these conditions I analysed climate-driven late Pleistocene-Holocene sediment cycles in this tectonically active region, which may be responsible for triggering the tectonic re-organization within the Himalayan orogenic wedge, leading to out-of-sequence thrusting, at least since early Holocene. The Kangra Basin is bounded by the MBT and the Sub-Himalayan Jwalamukhi Thrust (JMT) in the north and south, respectively and transiently stores sediments derived from the Dhauladhar Range. The Basin contains ~200-m-thick conglomerates reflecting two distinct aggradation phases; following aggradation, several fluvial terraces were sculpted into these fan deposits. 10Be CRN surface exposure dating of these terrace levels provides an age of 53.4±3.2 ka for the highest-preserved terrace (AF1); subsequently, this surface was incised until ~15 ka, when the second fan (AF2) began to form. AF2 fan aggradation was superseded by episodic Holocene incision, creating at least four terrace levels. We find a correlation between variations in sediment transport and ∂18O records from regions affected by the Indian Summer Monsoon (ISM). During strengthened ISMs sand post-LGM glacial retreat, aggradation occurred in the Kangra Basin, likely due to high sediment flux, whereas periods of a weakened ISM coupled with lower sediment supply coincided with renewed re-incision. However, the evolution of fluvial terraces along Sub-Himalayan streams in the Kangra sector is also forced by tectonic processes. Back-tilted, folded terraces clearly document tectonic activity of the JMT. Offset of one of the terrace levels indicates a shortening rate of 5.6±0.8 to 7.5±1.0 mm.a-1 over the last ~10 ka. Importantly, my study reveals that late Pleistocene/Holocene out-of-sequence thrusting accommodates 40-60% of the total 14±2 mm.a-1 shortening partitioned throughout the Sub-Himalaya. Importantly, the JMT records shortening at a lower rate over longer timescales hints towards out-of-sequence activity within the Sub-Himalaya. Re-activation of the JMT could be related to changes in the tectonic stress field caused by large-scale sediment removal from the basin. I speculate that the deformation processes of the Sub-Himalaya behave according to the predictions of critical wedge model and assume the following: While >200m of sediment aggradation would trigger foreland-ward propagation of the deformation front, re-incision and removal of most of the stored sediments (nearly 80-85% of the optimum basin-fill) would again create a sub-critical condition of the wedge taper and trigger the retreat of the deformation front. While tectonism is responsible for the longer-term processes of erosion associated with steepening hillslopes, sediment cycles in this environment are mainly the result of climatic forcing. My new 10Be cosmogenic nuclide exposure dates and a synopsis of previous studies show the late Pleistocene to Holocene alluvial fills and fluvial terraces studied here record periodic fluctuations of sediment supply and transport capacity on timescales of 1000-100000 years. To further evaluate the potential influence of climate change on these fluctuations, I compared the timing of aggradation and incision phases recorded within remnant alluvial fans and terraces with continental climate archives such as speleothems in neighboring regions affected by monsoonal precipitation. Together with previously published OSL ages yielding the timing of aggradation, I find a correlation between variations in sediment transport with oxygen-isotope records from regions affected by the Indian Summer Monsoon (ISM). Accordingly, during periods of increased monsoon intensity (transitions from dry and cold to wet and warm periods – MIS4 to MIS3 and MIS2 to MIS1) (MIS=marine isotope stage) and post-Last Glacial Maximum glacial retreat, aggradation occurred in the Kangra Basin, likely due to high sediment flux. Conversely, periods of weakened monsoon intensity or lower sediment supply coincide with re-incision of the existing basin-fill. Finally, my study entails part of a low-temperature thermochronology study to assess the youngest exhumation history of the Dhauladhar Range. Zircon helium (ZHe) ages and existing low-temperature data sets (ZHe, apatite fission track (AFT)) across this range, together with 3D thermokinematic modeling (PECUBE) reveals constraints on exhumation and activity of the range-bounding Main Boundary Thrust (MBT) since at least mid-Miocene time. The modeling results indicate mean slip rates on the MBT-fault ramp of ~2 – 3 mm.a-1 since its activation. This has lead to the growth of the >5-km-high frontal Dhauladhar Range and continuous deep-seated exhumation and erosion. The obtained results also provide interesting constraints of deformation patterns and their variation along strike. The results point towards the absence of the time-transient ‘mid-crustal ramp’ in the basal decollement and duplexing of the Lesser Himalayan sequence, unlike the nearby regions or even the central Nepal domain. A fraction of convergence (~10-15%) is accommodated along the deep-seated MBT-ramp, most likely merging into the MHT. This finding is crucial for a rigorous assessment of the overall level of tectonic activity in the Himalayan morphotectonic provinces as it contradicts recently-published geodetic shortening estimates. In these studies, it has been proposed that the total Himalayan shortening in the NW Himalaya is accommodated within the Sub-Himalaya whereas no tectonic activity is assigned to the MBT. N2 - Die sich verändernde Massenverteilung in einem Gebirge kann zu einer variierenden Sedimentablagerung führen, welche in Folge die Spannungszustände und Verwerfungsaktivitäten beeinflusst. Eine der herausforderndsten Aufgaben im Verständnis der Evolution aktiver Gebirge wie dem Himalaja, ist die Unterscheidung der verschiedenen treibenden Mechanismen wie der Variation im Sedimentfluss und der tektonischen Aktivitäten in Raum und Zeit. Der Himalaja ist einer der bedeutendsten känozoischen Gebirgszüge, der durch die Kollision zwischen der nordwärts wandernden indischen Platte und der eurasischen Kontinentalplatte vor 55-50 Ma entstand. Die anhaltende Konvergenz der beiden tektonischen Platten wird durch Verwerfungen und Auffaltungen innerhalb des bogenförmigen Gebirges aufgenommen, aber auch durch das fortwährende laterale und vertikale Wachstum des Tibetischen Plateaus, der angegliederten Gebirgszüge und den Gebirgsregionen weiter nördlich. Das Gebirgswachstum zeigt sich durch die Entwicklung von aufeinanderfolgenden in südlicher Richtung verkippten Verwerfungssystemen. Von Norden nach Süden unterteilen die Hauptstörungen Main Central Thrust (MCT), Main Boundary Thrust (MBT) und Main Frontal Thrust (MFT) den Himalaja in verschiedene morphotektonische Bereiche. Die anwachsende Topographie interagiert mit den feuchten Monsunwinden was zu einem ausgeprägten Regen-, Verwitterung-, Erosion- und Sedimenttransportgradienten zum Vorland hin und darüber hinaus führt. In den intermontanen Tälern, der tiefgelegenen Ausläufern des Himalajas ist ein Teil dieser Sedimente eingeschlossen und vorübergehend gelagert. Das verbesserte Verständnis über die Entwicklung dieser Sedimentarchive bietet eine einmalige Möglichkeit die Auslöser der veränderlichen Sedimentproduktion, -anlieferung und -lagerung in einem sich aktiv deformierenden Gebirge über Raum und Zeit zu entschlüsseln und unterstützt dabei die Anstrengungen eine Verbindung zwischen Sedimentvolumen in intermontanen Becken und den Veränderungen des Spannungszustandes in geringfügiger Krustentiefe zu untersuchen. Die Sedimentumverteilung in Gebirgen kann, über einen Zeitraum von 102-104 Jahren, kulturelle Eigenheiten, die Infrastruktur in den intermontanen Tälern und sogar die Seismotektonik eines Gebirgsgürtels, beeinflussen. Es besteht ein verstärktes Interesse die Prozesse über die Sedimentführung und den kausalen Zusammenhang zwischen Tektonik, Klima und Topographie zu verstehen. An dieser Schnittstelle zwischen den tektonischen Prozessen und den überlagernden klimatischen und sedimentären Prozessen im Gebirgskeil setzten meine Untersuchungen an. Das Untersuchungsgebiet umfasst das intermontane Kangra-Becken im nordwestlichen Sub-Himalaja, da hier die Eigenschaften der verschiedenen morphotektonischen Gebieten des Himalajas gut ausgeprägt sind. Dieses Gebiet gehört zu einer Region, die stark durch den Monsun geprägt wird. Zahlreiche Flussterrassen bieten hervorragende Markierungen für die Beurteilung der Deformationsprozesse innerhalb des Himalajischen Gebirgskeils. Durch ihre Situation direkt vor der Dhauladhar-Kette ist die Region sowohl früher als auch heute durch ausgeprägte Erosionsgradienten und Sedimentprozessen charakterisiert, die den wiederholend wechselnden Klimabedingungen zugeordnet werden können. Angesichts dieser Bedingungen untersuchte ich in dieser tektonisch aktiven Region, klimatisch gesteuerte jungpleistozäne-holozäne Sedimentzyklen, welche sich möglicherweise als Auslöser für die tektonische Umorganisation innerhalb himalajischen Gebirgskeils verantwortlich zeichnen und zumindest seit dem frühen Holozän zu out-of-sequence Aufschiebungen führen. Das Kangra-Becken ist durch die MBT und den Jwalamukhi Thrust (JMT) im Sub-Himalaja nach Norden und Süden begrenzt und lagert vorübergehend aus der Dhauladhar-Kette angelieferte Sedimente. Im Becken sind ~200-m dicke Konglomerate abgelagert, welche zwei ausgeprägte Aggradationsphasen wiederspiegeln. Nachfolgend auf die Aggradationsphasen wurden mehrere Flussterrassen in die Schuttfächerablagerungen eingeschnitten. Die Datierung der Terrassenoberflächen mittels kosmogener 10Beryllium Nuklide ergab für die höchste erhaltene Terrasse ein Alter von 53.4±3.2 ka (AF1). Diese Oberfläche wurde daraufhin bis ~15 ka fortwährend eingeschnitten, bis sich ein zweiter Schuttfächer (AF2) zu bilden begann. Die Aufschüttung des AF2 wurde durch episodische holozäne Einschneidungen verdrängt, wobei sich mindestens vier Terrassenebenen bildeten. Wir haben eine Korrelation zwischen dem variierenden Sedimenttransport und ∂18O Aufzeichnungen aus Regionen, die vom indischen Sommermonsun (ISM) betroffen sind, gefunden. Die Aggradation fand wohl durch einen erhöhten Sedimentfluss während verstärkten Phasen des ISM und der Enteisung nach dem letzteiszeitlichen Maximum statt, wobei Perioden eines geschwächten ISM mit einem tieferen Sedimentzufluss verbunden sind und auch mit erneuten Einschneidungen zusammentreffen. Die Evolution fluvialer Terrassen entlang von sub-himaljischen Flüssen im Kangra-Sektor wurde auch durch tektonische Prozesse erzwungen. Rückwärts gekippte und gefaltete Terrassen dokumentieren deutlich die tektonische Aktivität der JMT. Der Versatz einer der Terrassenebenen weist auf eine Verkürzungsrate von 5.6±0.8 bis 7.5±1.0 mm.a-1 über die letzten ~10 ka hin. Darüber hinaus zeigt meine Studie, dass jungpleistozäne/holozäne out-of-sequence Aufschiebungen 40-60 % der gesamten 14.2±2 mm.a-1 Verkürzung aufgeteilt über den ganzen Sub-Himalaja hinweg aufnehmen. Die Aufzeichnungen an der JMT dokumentieren niedrigere Verkürzungsraten über längere Zeiträume, was auf out-of-sequence Aktivität im Sub-Himalaja hindeutet. Die erneute Aktivierung der JMT kann mit Veränderungen im tektonischen Spannungsfeld durch großflächigen Sedimenttransport aus dem Becken in Verbindung gebracht werden. Ich spekuliere daher darauf, dass die Deformationsprozesse im Sub-Himalaja sich entsprechend der Voraussagen des Modelles der kritischen Keilform verhalten und treffe folgende Annahmen: >200 m Sedimentaggradation würde eine gegen das Vorland gerichtete Ausbreitung der Deformationsfront, eine Wiedereinschneidung und die Beseitigung der meisten gelagerten Sedimente (beinahe 80-85 % der optimalen Beckenfüllung) auslösen. Daraus folgten wiederum sub-kritische Bedingungen der kritischen Keilformtheorie und der Rückzug der Deformationsfront würde somit ausgelöst. Während Erosionsproszesse und die damit verbundene Versteilung der Hänge über einen längeren Zeitraum der Tektonik zuzuschreiben sind, sind Sedimentzyklen in diesem Umfeld hauptsächlich das Resultat aus klimatischen Zwängen. Meine neuen Oberflächenexpositionsdaten aus kosmogenen Nukliden 10Be und die Zusammenstellung bisheriger Studien jungpleistozäner bis holozäner Flussterrassen und sowie alluviale Verfüllungen zeigen periodische Fluktuationen in der Sedimentanlieferung und der Transportkapazität in einem Zeitraum von 10³ bis 10⁵ Jahren. Um den möglichen Einfluss des Klimawandels auf diese Fluktuationen zu bewerten, habe ich den in den Schuttfächern und Terrassen aufgezeichneten zeitlichen Ablauf der Aggradations- und Einschneidungsphasen mit kontinentalen Klimaarchiven wie z. B. Speläotheme (stalagmiten) aus Monsun beeinflussten Nachbarregionen verglichen. Zusammen mit bisherigen publizierten OSL Altern, welche den Zeitpunkt der Aggradation anzeigen, finde ich eine Korrelation zwischen Variationen des Sedimenttransportes durch Sauerstoff-Isotopen Aufzeichnungen aus den von ISM betroffenen Gebieten. Dementsprechend kam es im Kangra-Becken während Zeiten der verstärkten Monsunintensität (Wechsel von trockenen, kalten und feuchten, warmen Perioden – MIS4 bis MIS3 und MIS2 bis MIS1) (MIS = marines Isotopenstadium) und der Enteisung des letzteiszeitlichen Maximums wahrscheinlich durch erhöhten Sedimentfluss zur Aggradation. Im Gegenzug stimmen schwache Perioden der Monsunintensität oder niedrigeren Sedimentlieferung mit der Wiedereinschneidung der bestehenden Becken überein. Zum Schluss enthält meine Studie einen Teil einer Tieftemperatur-Thermochronologie Studie, welche die jüngste Exhumationsgeschichte der Dhauladhar-Kette beurteilt. Zirkon-Helium (ZHe) Alter und publizierte Tieftemperatur-Daten (ZHe, Apatit-Spaltspuren (AFT)) dieses Höhenzuges belegen zusammen mit einer 3D thermokinematischen Modellierung (PECUBE) die Einschränkungen der Exhumation und der an die Gebirgskette gebundene MBT-Aktivität mindestens seit dem mittleren Miozän. Die Resultate der Modellierung deuten auf mittlere Gleitraten auf der MBT-Überschiebungsrampe von ~2–3 mm/yr seit ihrer Aktivierung hin. Dies führte zum Wachstum der >5-km hohen Front der Dhauladhar-Kette und einer kontinuierlichen, tiefsitzenden Exhumation und Erosion. Die erzielten Ergebnisse zeigen die Einschränkungen der Deformationsmuster und ihrer Variation entlang des Streichens. Die Resultate deuten auf eine Abwesenheit einer über die zeit-veränderlichen Rampe des basalen Abscherhorizontes in der mittleren Krustentiefe und einer Duplexbildung des Niederen Himalajas hin, dies im Gegensatz zu den nahegelegenen Gebieten oder sogar zu Zentralnepal. Ein Bruchteil der Konvergenz (~10-15%) wird entlang der tiefsitzenden MBT-Rampe aufgenommen, die aller Wahrscheinlichkeit nach in die MHT übergeht. Diese Erkenntnis ist maßgeblich für eine gründliche Beurteilung der Gesamtgröße der tektonischen Aktivitäten in den morphotektonischen Provinzen des Himalajas, da sie kürzlich publizierten geodätischen Schätzungen von Verkürzungsraten widerspricht. In jenen Studien wurde vorgeschlagen, dass die gesamte Verkürzung des Gebirges im nordwestlichen Himalaja innerhalb des Sub-Himalajas aufgenommen wird, wobei der MBT keine tektonische Aktivität zugeschrieben werden wird. KW - tectonic geomorphology KW - cosmogenic radionuclide-based dating KW - neotectonics KW - tektonische Geomorphologie KW - kosmogene Radionuklid-basierte Datierung KW - Neotektonik Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-103390 ER - TY - THES A1 - Georgieva, Viktoria T1 - Neotectonics & Cooling History of the Southern Patagonian Andes T1 - Neotektonik und Abkühlgeschichte der Südpatagonschen Anden BT - assessing the Role of Ridge Collision and Slab Window Formation inboard of the Chile Triple Junction (46-47°S) BT - die Rolle von ozeanischer Rückenkollision und der Bilding eines “slab window” am Chile-Triplepunkt (47°S) N2 - The collision of bathymetric anomalies, such as oceanic spreading centers, at convergent plate margins can profoundly affect subduction dynamics, magmatism, and the structural and geomorphic evolution of the overriding plate. The Southern Patagonian Andes of South America are a prime example for sustained oceanic ridge collision and the successive formation and widening of an extensive asthenospheric slab window since the Middle Miocene. Several of the predicted upper-plate geologic manifestations of such deep-seated geodynamic processes have been studied in this region, but many topics remain highly debated. One of the main controversial topics is the interpretation of the regional low-temperature thermochronology exhumational record and its relationship with tectonic and/or climate-driven processes, ultimately manifested and recorded in the landscape evolution of the Patagonian Andes. The prominent along-strike variance in the topographic characteristics of the Andes, combined with coupled trends in low-temperature thermochronometer cooling ages have been interpreted in very contrasting ways, considering either purely climatic (i.e. glacial erosion) or geodynamic (slab-window related) controlling factors. This thesis focuses on two main aspects of these controversial topics. First, based on field observations and bedrock low-temperature thermochronology data, the thesis addresses an existing research gap with respect to the neotectonic activity of the upper plate in response to ridge collision - a mechanism that has been shown to affect the upper plate topography and exhumational patterns in similar tectonic settings. Secondly, the qualitative interpretation of my new and existing thermochronological data from this region is extended by inverse thermal modelling to define thermal histories recorded in the data and evaluate the relative importance of surface vs. geodynamic factors and their possible relationship with the regional cooling record. My research is centered on the Northern Patagonian Icefield (NPI) region of the Southern Patagonian Andes. This site is located inboard of the present-day location of the Chile Triple Junction - the juncture between the colliding Chile Rise spreading center and the Nazca and Antarctic Plates along the South American convergent margin. As such this study area represents the region of most recent oceanic-ridge collision and associated slab window formation. Importantly, this location also coincides with the abrupt rise in summit elevations and relief characteristics in the Southern Patagonian Andes. Field observations, based on geological, structural and geomorphic mapping, are combined with bedrock apatite (U-Th)/He and apatite fission track (AHe and AFT) cooling ages sampled along elevation transects across the orogen. This new data reveals the existence of hitherto unrecognized neotectonic deformation along the flanks of the range capped by the NPI. This deformation is associated with the closely spaced oblique collision of successive oceanic-ridge segments in this region over the past 6 Ma. I interpret that this has caused a crustal-scale partitioning of deformation and the decoupling, margin-parallel migration, and localized uplift of a large crustal sliver (the NPI block) along the subduction margin. The location of this uplift coincides with a major increase of summit elevations and relief at the northern edge of the NPI massif. This mechanism is compatible with possible extensional processes along the topographically subdued trailing edge of the NPI block as documented by very recent and possibly still active normal faulting. Taken together, these findings suggest a major structural control on short-wavelength variations in topography in the Southern Patagonian Andes - the region affected by ridge collision and slab window formation. The second research topic addressed here focuses on using my new and existing bedrock low-temperature cooling ages in forward and inverse thermal modeling. The data was implemented in the HeFTy and QTQt modeling platforms to constrain the late Cenozoic thermal history of the Southern Patagonian Andes in the region of the most recent upper-plate sectors of ridge collision. The data set combines AHe and AFT data from three elevation transects in the region of the Northern Patagonian Icefield. Previous similar studies claimed far-reaching thermal effects of the approaching ridge collision and slab window to affect patterns of Late Miocene reheating in the modelled thermal histories. In contrast, my results show that the currently available data can be explained with a simpler thermal history than previously proposed. Accordingly, a reheating event is not needed to reproduce the observations. Instead, the analyzed ensemble of modelled thermal histories defines a Late Miocene protracted cooling and Pliocene-to-recent stepwise exhumation. These findings agree with the geological record of this region. Specifically, this record indicates an Early Miocene phase of active mountain building associated with surface uplift and an active fold-and-thrust belt, followed by a period of stagnating deformation, peneplanation, and lack of synorogenic deposition in the Patagonian foreland. The subsequent period of stepwise exhumation likely resulted from a combination of pulsed glacial erosion and coeval neotectonic activity. The differences between the present and previously published interpretation of the cooling record can be reconciled with important inconsistencies of previously used model setup. These include mainly the insufficient convergence of the models and improper assumptions regarding the geothermal conditions in the region. This analysis puts a methodological emphasis on the prime importance of the model setup and the need for its thorough examination to evaluate the robustness of the final outcome. N2 - Die Kollision ozeanischer Rückensysteme entlang aktiver Subduktionszonen kann eine nachhaltige Wirkung auf die geodynamische, magmatische, strukturelle und geomorphologische Entwicklung der Oberplatte ausüben. Die Südpatagonischen Anden repräsentieren ein außergewöhnliches Beispiel für eine aktive ozeanische Rückenkollision mit einem Kontinentalrand, die über mehrere Millionen Jahre hinweg aufrechterhalten wurde. Dieser Prozess wurde begleitet von großräumigen Mantelprozessen mit der gleichzeitigen Bildung eines asthenosphärischen Fensters unter Südpatagonien – eine weiträumige Öffnung zwischen den divergierenden ozeanischen Platten unter der Oberplatte, die den Kontakt des asthenosphärischen Mantels mit der kontinentalen Lithosphäre ermöglicht hat. Auch wenn die daraus resultierenden geologischen Erscheinungsformen der Oberplatte bereits in unterschiedlichen Regionen studiert wurden, bleiben viele Fragen hinsichtlich der assoziierten Exhumations- Abkühlungs- und Deformationsprozesse noch offen. Eine kontroverse Frage in diesem Zusammenhang bezieht sich auf die Interpretation von Niedrigtemperatur-Thermochronologiedaten, welche die jüngste Abkühlungs- und Deformationsgeschichte der Erdkruste und die Landschaftsentwicklung in Südpatagonien dokumentieren. Diese Abkühlgeschichte kann theoretisch zeitliche und/oder räumliche Variationen im Erosionspotential von Oberflächenprozessen und der daraus resultierenden jüngsten Exhumation beleuchten oder auch den Einfluss überlagerter thermischer Effekte des hochliegenden Mantels widerspiegeln. Die ausgeprägten topographischen Änderungen entlang des Streichens der Patagonischen Anden, die offenbar auch an Trends in den thermochronometrischen Daten gekoppelt sind, wurden in der Vergangenheit bereits äußerst kontrovers interpretiert. Endglieder dieser Diskussion sind entweder klimatisch gesteuerte Prozessmodelle und eine damit verbundene räumliche Variabilität in der Exhumation (glaziale Erosion) oder geodynamischen Prozesse, die insbesondere eine regional begrenzte Deformation und Hebung mit der Kollision des ozeanischen Chile-Rückens in Verbindung bringen. Diese Dissertation ist daher auf zwei wesentliche Aspekte dieser Problematik fokussiert. Sie befasst sich einerseits mit der soweit kaum erforschten Existenz junger (neotektonischer) Deformationsphänomene, die unmittelbar mit der Rückenkollision in Verbindung steht und das Potenzial hat, die Topographie und die thermochronometrisch dokumentierte Abkühlgeschichte des Patagonischen Gebirgszuges mitbeeinflusst zu haben. Ein weiterer Forschungsfokus liegt auf der erweiterten Interpretation eines Teils der im Rahmen dieser Arbeit erstellten sowie von vorhandenen thermochronometrischen Datensätzen durch inverse numerische Modellierungen. Diese Modellierungen hatten das Ziel, die thermische Geschichte der Proben, die am besten die beobachteten Daten reproduzieren kann, zu definieren und die relative Bedeutung geodynamischer und oberflächennaher Prozesse abzuschätzen. Das Untersuchungsgebiet liegt in dem Gebirgsmassiv des Nordpatagonischen Eisfeldes von Südostpatagonien. Dieser Teil der Südpatagonischen Anden liegt in der Region, wo die derzeitig aktive Kollision des Chile-Rückens seit 6 Millionen Jahren im Gange ist. Der Nordrand des Gebirgsmassivs fällt zusammen mit der abrupten Zunahme der Topographie am Übergang von den Nord- in den Südpatagonischen Anden - das Gebiet, das von ozeanischer Rückenkollision betroffen wurde und durch die Bildung des asthenosphärischen Fensters gekennzeichnet ist. Diverse Feldbeobachtungen, kombiniert mit neuen thermochronometrischen Daten ((U-Th)/He- und Spaltspurendatierungen an Apatiten von Festgesteinsproben, AHe und AFT), dokumentieren die bisher unbekannte Existenz junger tektonischer Bewegungen entlang der Flanken dieses erhöhten Gebirgszuges, welche die topographischen, geomorphologischen und thermochronometrischen Charakteristika der Region deutlich beeinflusst haben. Diese Deformation wurde ausgelöst durch die schräge Kollision von Segmenten des Chile- Rückens, die eine Partitionierung in der Krustendeformation in Komponenten die jeweils parallel und orthogonal zum konvergenten Plattenrand orientiert sind, nach sich zog. Dieser hierbei entstandene Krustenblock des Nordpatagonischen Eisfeldes wurde entlang der Plattengrenze entkoppelt und nordwärts bewegt. Diese Kinematik führte zur lokalen Hebung und Extension (Absenkung) jeweils entsprechend am Nord- und Südrand des Krustenblocks. Die resultierende differentielle Hebung und Extension dieses Krustenblocks korreliert sehr gut mit Muster der räumlichen Verteilung der Topographie und den regionalen thermochronometrischen Daten und legt somit eine direkte Beziehung zwischen geodynamischen Randbedingungen, tektonischer Deformation, Exhumation und Landschaftsentwicklung nahe. Der zweite Forschungsfokus liegt auf der Implementierung meiner neuen sowie bereits publizierter thermochronometrischer Daten in Vorwärts- und inversen numerischen Modellierungen. Es wurden die frei verfügbaren Modellierungsplattformen HeFTy und QTQt benutzt, um die Abkühlungsgeschichte der Südpatagonischen Anden im Gebiet der jüngsten ozeanischen Rückenkollision zu definieren. Der Datensatz kombiniert AHe und AFT Abkühlalter aus drei Höhenprofilen in der Region des Nordpatagonischen Eisfeldes. Kürzlich publizierte Studien, die auf identischen Datierungsmethoden und numerischen Ansätzen beruhen, postulieren, dass ein signifikanter und räumlich weitreichender thermischer Effekt, , sich bereits während des Obermiozäns in den thermochronometrischen Daten manifestiert und auf die Bildung des asthenosphärischen Fensters zurückzuführen ist. Im Unterschied dazu zeigen meine Ergebnisse, dass die verfügbaren thermochronometrischen Daten mit einem einfacheren thermischen Szenario erklärt werden können und ein thermischer Puls nicht notwendig ist, um die Abkühlalter in der vorliegenden Form zu reproduzieren. Das kumulative Ergebnis der Modellierungen dokumentiert eine alternative Möglichkeit mit einer langsamen und/oder stagnierenden Abkühlung im Obermiozän, auf die dann im Pliozän eine schnelle und ausgeprägte schrittweise Abkühlung stattfand. Diese Ergebnisse sind kompatibel mit der geologischen Geschichte der Region. So wurde in diesem Gebiet eine Phase aktiver Einengung, Hebung und Exhumation im Unteren Miozän nachgewiesen. Dieser Episode folgte eine Phase der Ruhe in der Deformation, eine großräumige Einebnung der Deformationsfront durch fluviatile Prozesse und eine drastische Abnahme synorogener Ablagerungen. Die darauffolgende Phase schrittweiser Abkühlung resultierte aus einer Kombination von einerseits rekurrenten weiträumigen Vergletscherungen und damit einhergehender glazialer Erosion und andererseits von gleichzeitigen lokalen tektonischen Vertikalbewegungen durch Störungen, die im plattentektonischen Kontext aktiver ozeanischer Rückenkollision entstanden. Die signifikanten Unterschiede zwischen bereits publizierten und den hier präsentierten Ergebnissen beruhen auf der Erkenntnis wichtiger Nachteile der früher benutzten Modellannahmen. Diese beinhalten z.B. die unzureichende Konvergenz (unzureichende Anzahl an Iterationen) und Vorgaben bezüglich der regionalen geothermischen Bedingungen. Diese kritische Betrachtung zeigt, dass methodische Schwerpunkte und Annahmen dieser Modellierungen gründlich geprüft werden müssen, um eine objektive Abschätzung der Ergebnisse zu erzielen. Zusammenfassend kann festgestellt werden, dass der Impakt bisher unbekannter neotektonischer Strukturen entlang des konvergenten Plattenrandes von Südpatagonien sehr weitreichende Folgen hat. Diese Strukturen stehen räumlich und zeitlich in direkter Beziehung zur seit dem Obermiozän andauernden Subduktion verschiedener Segmente des Chile-Spreizungszentrums; sie unterstreichen die fundamentale Bedeutung der Subduktion bathymetrischer Anomalien für die tektonische und geomorphologische Entwicklung der Oberplatte, besonders in Regionen mit ausgeprägten Erosionsprozessen. Die hier dokumentierten Ergebnisse aus der inversen numerischen Modellierung thermochronometrischer Daten stellen bereits publizierte Befunde aus Studien infrage, die auf ähnlichen Ansätzen beruhen und welche den regionalen thermischen Effekt des asthenosphärischen Fensters in Südpatagonien hervorheben. Meine Ergebnisse dokumentieren stattdessen eine Abkühlungsgeschichte, die durch eine synergistische, klimatisch und tektonisch bedingte schrittweise Exhumation definiert ist. Eine abschließende synoptische Betrachtung der gesamten thermochronometrischen Daten in Südpatagonien belegt das Fehlen von Mustern in der regionalen Verteilung von Abkühlaltern entlang des Streichens des Orogens. Die Existenz eines solchen Trends wurde früher postuliert und im Rahmen eines transienten Pulses dynamischer Topographie und Exhumation interpretiert, der mit der Bildung und Migration des asthenosphärischen Fensters assoziiert wurde. Meine neue Zusammenstellung und Interpretation der Thermochronometrie zeigt stattdessen, dass die regionale Verteilung von Abkühlaltern in Südpatagonien vor allem durch die langfristig wirksame räumliche Verteilung glazialer Erosionsprozesse bestimmt wird, die u.a. zu einer tieferen Exhumation im Zentrum des Orogens geführt hat. Dieses regionale Exhumationsmuster wird allerdings lokal durch differentielle Hebung von Krustenblöcken modifiziert, die mit den neotektonischen Bewegungen im Rahmen der Kollision des Kontinentalrandes mit dem ozeanischen Chile-Rücken und der Partitionierung der Deformation in Zusammenhang stehen. KW - neotectonics KW - ridge-collision KW - asthenospheric slab-window KW - thermochronology KW - Patagonia KW - Apatite (U-Th)/He, apatite fission track dating KW - thermal modeling KW - Apatit-(U-Th)/He Datierung KW - Apatit-Spaltspurendatierung KW - Patagonia KW - asthenospherisches "slab-window" KW - Neotektonik KW - Rückenkollision KW - thermische Modellierung KW - Thermochronologie Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-104185 ER -