TY - JOUR A1 - Veh, Georg A1 - Lützow, Natalie A1 - Kharlamova, Varvara A1 - Petrakov, Dmitry A1 - Hugonnet, Romain A1 - Korup, Oliver T1 - Trends, breaks, and biases in the frequency of reported glacier lake outburst floods JF - Earth's future N2 - Thousands of glacier lakes have been forming behind natural dams in high mountains following glacier retreat since the early 20th century. Some of these lakes abruptly released pulses of water and sediment with disastrous downstream consequences. Yet it remains unclear whether the reported rise of these glacier lake outburst floods (GLOFs) has been fueled by a warming atmosphere and enhanced meltwater production, or simply a growing research effort. Here we estimate trends and biases in GLOF reporting based on the largest global catalog of 1,997 dated glacier-related floods in six major mountain ranges from 1901 to 2017. We find that the positive trend in the number of reported GLOFs has decayed distinctly after a break in the 1970s, coinciding with independently detected trend changes in annual air temperatures and in the annual number of field-based glacier surveys (a proxy of scientific reporting). We observe that GLOF reports and glacier surveys decelerated, while temperature rise accelerated in the past five decades. Enhanced warming alone can thus hardly explain the annual number of reported GLOFs, suggesting that temperature-driven glacier lake formation, growth, and failure are weakly coupled, or that outbursts have been overlooked. Indeed, our analysis emphasizes a distinct geographic and temporal bias in GLOF reporting, and we project that between two to four out of five GLOFs on average might have gone unnoticed in the early to mid-20th century. We recommend that such biases should be considered, or better corrected for, when attributing the frequency of reported GLOFs to atmospheric warming. KW - glaciers KW - climate change KW - hazard KW - mountains KW - cryosphere KW - frequency Y1 - 2022 U6 - https://doi.org/10.1029/2021EF002426 SN - 2328-4277 VL - 10 IS - 3 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Souto-Veiga, Rodrigo A1 - Groeneveld, Juergen A1 - Enright, Neal J. A1 - Fontaine, Joseph B. A1 - Jeltsch, Florian T1 - Declining pollination success reinforces negative climate and fire change impacts in a serotinous, fire-killed plant JF - Plant ecology : an international journal N2 - Climate change projections predict that Mediterranean-type ecosystems (MTEs) are becoming hotter and drier and that fires will become more frequent and severe. While most plant species in these important biodiversity hotspots are adapted to hot, dry summers and recurrent fire, the Interval Squeeze framework suggests that reduced seed production (demographic shift), reduced seedling establishment after fire (post fire recruitment shift), and reduction in the time between successive fires (fire interval shift) will threaten fire killed species under climate change. One additional potential driver of accelerated species decline, however, has not been considered so far: the decrease in pollination success observed in many ecosystems worldwide has the potential to further reduce seed accumulation and thus population persistence also in these already threatened systems. Using the well-studied fire-killed and serotinous shrub species Banksia hookeriana as an example, we apply a new spatially implicit population simulation model to explore population dynamics under past (1988-2002) and current (2003-2017) climate conditions, deterministic and stochastic fire regimes, and alternative scenarios of pollination decline. Overall, model results suggest that while B. hookeriana populations were stable under past climate conditions, they will not continue to persist under current (and prospective future) climate. Negative effects of climatic changes and more frequent fires are reinforced by the measured decline in seed set leading to further reduction in the mean persistence time by 12-17%. These findings clearly indicate that declining pollination rates can be a critical factor that increases further the pressure on the persistence of fire-killed plants. Future research needs to investigate whether other fire-killed species are similarly threatened, and if local population extinction may be compensated by recolonization events, facilitating persistence in spatially structured meta-communities. KW - climate change KW - fire frequency KW - interval squeeze KW - pollination KW - process-based simulation model KW - mediterranean-type ecosystem Y1 - 2022 U6 - https://doi.org/10.1007/s11258-022-01244-7 SN - 1385-0237 SN - 1573-5052 VL - 223 IS - 7 SP - 863 EP - 881 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Ben Nsir, Siwar A1 - Jomaa, Seifeddine A1 - Yildirim, Umit A1 - Zhou, Xiangqian A1 - D'Oria, Marco A1 - Rode, Michael A1 - Khlifi, Slaheddine T1 - Assessment of climate change impact on discharge of the lakhmass catchment (Northwest Tunisia) JF - Water N2 - The Mediterranean region is increasingly recognized as a climate change hotspot but is highly underrepresented in hydrological climate change studies. This study aims to investigate the climate change effects on the hydrology of Lakhmass catchment in Tunisia. Lakhmass catchment is a part of the Medium Valley of Medjerda in northwestern Tunisia that drains an area of 126 km(2). First, the Hydrologiska Byrans Vattenbalansavdelning light (HBV-light) model was calibrated and validated successfully at a daily time step to simulate discharge during the 1981-1986 period. The Nash Sutcliffe Efficiency and Percent bias (NSE, PBIAS) were (0.80, +2.0%) and (0.53, -9.5%) for calibration (September 1982-August 1984) and validation (September 1984-August 1986) periods, respectively. Second, HBV-light model was considered as a predictive tool to simulate discharge in a baseline period (1981-2009) and future projections using data (precipitation and temperature) from thirteen combinations of General Circulation Models (GCMs) and Regional Climatic Models (RCMs). We used two trajectories of Representative Concentration Pathways, RCP4.5 and RCP8.5, suggested by the Intergovernmental Panel on Climate Change (IPCC). Each RCP is divided into three projection periods: near-term (2010-2039), mid-term (2040-2069) and long-term (2070-2099). For both scenarios, a decrease in precipitation and discharge will be expected with an increase in air temperature and a reduction in precipitation with almost 5% for every +1 degrees C of global warming. By long-term (2070-2099) projection period, results suggested an increase in temperature with about 2.7 degrees C and 4 degrees C, and a decrease in precipitation of approximately 7.5% and 15% under RCP4.5 and RCP8.5, respectively. This will likely result in a reduction of discharge of 12.5% and 36.6% under RCP4.5 and RCP8.5, respectively. This situation calls for early climate change adaptation measures under a participatory approach, including multiple stakeholders and water users. KW - hydrological modeling KW - HBV-light model KW - Mediterranean KW - discharge KW - climate change KW - RCP4,5 and 8,5 Y1 - 2022 U6 - https://doi.org/10.3390/w14142242 SN - 2073-4441 VL - 14 IS - 14 PB - MDPI CY - Basel ER - TY - JOUR A1 - McCool, Weston C. A1 - Codding, Brian F. A1 - Vernon, Kenneth B. A1 - Wilson, Kurt M. A1 - Yaworsky, Peter M. A1 - Marwan, Norbert A1 - Kennett, Douglas J. T1 - Climate change-induced population pressure drives high rates of lethal violence in the Prehispanic central Andes JF - Proceedings of the National Academy of Sciences of the United States of America : PNAS N2 - Understanding the influence of climate change and population pressure on human conflict remains a critically important topic in the social sciences. Long-term records that evaluate these dynamics across multiple centuries and outside the range of modern climatic variation are especially capable of elucidating the relative effect of-and the interaction between-climate and demography. This is crucial given that climate change may structure population growth and carrying capacity, while both climate and population influence per capita resource availability. This study couples paleoclimatic and demographic data with osteological evaluations of lethal trauma from 149 directly accelerator mass spectrometry C-14-dated individuals from the Nasca highland region of Peru. Multiple local and supraregional precipitation proxies are combined with a summed probability distribution of 149 C-14 dates to estimate population dynamics during a 700-y study window. Counter to previous findings, our analysis reveals a precipitous increase in violent deaths associated with a period of productive and stable climate, but volatile population dynamics. We conclude that favorable local climate conditions fostered population growth that put pressure on the marginal and highly circumscribed resource base, resulting in violent resource competition that manifested in over 450 y of internecine warfare. These findings help support a general theory of intergroup violence, indicating that relative resource scarcity-whether driven by reduced resource abundance or increased competition-can lead to violence in subsistence societies when the outcome is lower per capita resource availability. KW - climate change KW - population pressure KW - warfare KW - lethal violence KW - Andes Y1 - 2022 U6 - https://doi.org/10.1073/pnas.2117556119 SN - 0027-8424 SN - 1091-6490 VL - 119 IS - 17 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Kong, Xiangzhen A1 - Ghaffar, Salman A1 - Determann, Maria A1 - Friese, Kurt A1 - Jomaa, Seifeddine A1 - Mi, Chenxi A1 - Shatwell, Tom A1 - Rinke, Karsten A1 - Rode, Michael T1 - Reservoir water quality deterioration due to deforestation emphasizes the indirect effects of global change JF - Water research : a journal of the International Association on Water Quality (IAWQ) N2 - Deforestation is currently a widespread phenomenon and a growing environmental concern in the era of rapid climate change. In temperate regions, it is challenging to quantify the impacts of deforestation on the catchment dynamics and downstream aquatic ecosystems such as reservoirs and disentangle these from direct climate change impacts, let alone project future changes to inform management. Here, we tackled this issue by investigating a unique catchment-reservoir system with two reservoirs in distinct trophic states (meso- and eutrophic), both of which drain into the largest drinking water reservoir in Germany. Due to the prolonged droughts in 2015-2018, the catchment of the mesotrophic reservoir lost an unprecedented area of forest (exponential increase since 2015 and ca. 17.1% loss in 2020 alone). We coupled catchment nutrient exports (HYPE) and reservoir ecosystem dynamics (GOTM-WET) models using a process-based modeling approach. The coupled model was validated with datasets spanning periods of rapid deforestation, which makes our future projections highly robust. Results show that in a short-term time scale (by 2035), increasing nutrient flux from the catchment due to vast deforestation (80% loss) can turn the mesotrophic reservoir into a eutrophic state as its counterpart. Our results emphasize the more prominent impacts of deforestation than the direct impact of climate warming in impairment of water quality and ecological services to downstream aquatic ecosystems. Therefore, we propose to evaluate the impact of climate change on temperate reservoirs by incorporating a time scale-dependent context, highlighting the indirect impact of deforestation in the short-term scale. In the long-term scale (e.g. to 2100), a guiding hypothesis for future research may be that indirect effects (e.g., as mediated by catchment dynamics) are as important as the direct effects of climate warming on aquatic ecosystems. KW - deforestation KW - climate change KW - temperate regions KW - reservoir KW - eutrophication KW - process-based modeling Y1 - 2022 U6 - https://doi.org/10.1016/j.watres.2022.118721 SN - 0043-1354 SN - 1879-2448 VL - 221 PB - Elsevier Science CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Katzenberger, Anja A1 - Levermann, Anders A1 - Schewe, Jacob A1 - Pongratz, Julia T1 - Intensification of very wet monsoon seasons in India under global warming JF - Geophysical research letters N2 - Rainfall-intense summer monsoon seasons on the Indian subcontinent that are exceeding long-term averages cause widespread floods and landslides. Here we show that the latest generation of coupled climate models robustly project an intensification of very rainfall-intense seasons (June-September). Under the shared socioeconomic pathway SSP5-8.5, very wet monsoon seasons as observed in only 5 years in the period 1965-2015 are projected to occur 8 times more often in 2050-2100 in the multi-model average. Under SSP2-4.5, these seasons become only a factor of 6 times more frequent, showing that even modest efforts to mitigate climate change can have a strong impact on the frequency of very strong rainfall seasons. Besides, we find that the increasing risk of extreme seasonal rainfall is accompanied by a shift from days with light rainfall to days with moderate or heavy rainfall. Additionally, the number of wet days is projected to increase. KW - Indian monsoon KW - climate modeling KW - extreme seasons KW - climate change KW - CMIP6 KW - India Y1 - 2022 U6 - https://doi.org/10.1029/2022GL098856 SN - 0094-8276 SN - 1944-8007 VL - 49 IS - 15 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Kuhla, Kilian A1 - Willner, Sven N. A1 - Otto, Christian A1 - Geiger, Tobias A1 - Levermann, Anders T1 - Ripple resonance amplifies economic welfare loss from weather extremes JF - Environmental research letters : ERL / Institute of Physics N2 - The most complex but potentially most severe impacts of climate change are caused by extreme weather events. In a globally connected economy, damages can cause remote perturbations and cascading consequences-a ripple effect along supply chains. Here we show an economic ripple resonance that amplifies losses when consecutive or overlapping weather extremes and their repercussions interact. This amounts to an average amplification of 21% for climate-induced heat stress, river floods, and tropical cyclones. Modeling the temporal evolution of 1.8 million trade relations between >7000 regional economic sectors, we find that the regional responses to future extremes are strongly heterogeneous also in their resonance behavior. The induced effect on welfare varies between gains due to increased demand in some regions and losses due to demand or supply shortages in others. Within the current global supply network, the ripple resonance effect of extreme weather is strongest in high-income economies-an important effect to consider when evaluating past and future economic climate impacts. KW - consecutive disasters KW - economic ripple resonance KW - repercussion resonance KW - weather extremes KW - supply network KW - climate impacts KW - climate change Y1 - 2021 U6 - https://doi.org/10.1088/1748-9326/ac2932 SN - 1748-9326 VL - 16 IS - 11 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Pearce, Warren A1 - Özkula, Suay M. A1 - Greene, Amanda K. A1 - Teeling, Lauren A1 - Bansard, Jennifer S. A1 - Omena, Janna Joceli A1 - Rabello, Elaine Teixeira T1 - Visual cross-platform analysis JF - Information, Communication and Society: digital methods to research social media images N2 - Analysis of social media using digital methods is a flourishing approach. However, the relatively easy availability of data collected via platform application programming interfaces has arguably led to the predominance of single-platform research of social media. Such research has also privileged the role of text in social media analysis, as a form of data that is more readily gathered and searchable than images. In this paper, we challenge both of these prevailing forms of social media research by outlining a methodology for visual cross-platform analysis (VCPA), defined as the study of still and moving images across two or more social media platforms. Our argument contains three steps. First, we argue that cross-platform analysis addresses a gap in research methods in that it acknowledges the interplay between a social phenomenon under investigation and the medium within which it is being researched, thus illuminating the different affordances and cultures of web platforms. Second, we build on the literature on multimodal communication and platform vernacular to provide a rationale for incorporating the visual into cross-platform analysis. Third, we reflect on an experimental cross-platform analysis of images within social media posts (n = 471,033) used to communicate climate change to advance different modes of macro- and meso-levels of analysis that are natively visual: image-text networks, image plots and composite images. We conclude by assessing the research pathways opened up by VCPA, delineating potential contributions to empirical research and theory and the potential impact on practitioners of social media communication. KW - research methodology KW - visual analysis KW - social media KW - climate change Y1 - 2018 U6 - https://doi.org/10.1080/1369118X.2018.1486871 SN - 1468-4462 SN - 1369-118X VL - 23 IS - 2 SP - 161 EP - 180 PB - Routledge CY - London ER - TY - JOUR A1 - Palmer, Matthew D. A1 - Gregory, Jonathan A1 - Bagge, Meike A1 - Calvert, Daley A1 - Hagedoorn, Jan Marius A1 - Howard, Tom A1 - Klemann, Volker A1 - Lowe, Jason A. A1 - Roberts, Chris A1 - Slangen, Aimee B. A. A1 - Spada, Giorgio T1 - Exploring the drivers of global and local sea‐level change over the 21st century and beyond JF - Earth's future N2 - We present a new set of global and local sea‐level projections at example tide gauge locations under the RCP2.6, RCP4.5, and RCP8.5 emissions scenarios. Compared to the CMIP5‐based sea‐level projections presented in IPCC AR5, we introduce a number of methodological innovations, including (i) more comprehensive treatment of uncertainties, (ii) direct traceability between global and local projections, and (iii) exploratory extended projections to 2300 based on emulation of individual CMIP5 models. Combining the projections with observed tide gauge records, we explore the contribution to total variance that arises from sea‐level variability, different emissions scenarios, and model uncertainty. For the period out to 2300 we further breakdown the model uncertainty by sea‐level component and consider the dependence on geographic location, time horizon, and emissions scenario. Our analysis highlights the importance of local variability for sea‐level change in the coming decades and the potential value of annual‐to‐decadal predictions of local sea‐level change. Projections to 2300 show a substantial degree of committed sea‐level rise under all emissions scenarios considered and highlight the reduced future risk associated with RCP2.6 and RCP4.5 compared to RCP8.5. Tide gauge locations can show large ( > 50%) departures from the global average, in some cases even reversing the sign of the change. While uncertainty in projections of the future Antarctic ice dynamic response tends to dominate post‐2100, we see substantial differences in the breakdown of model variance as a function of location, time scale, and emissions scenario. KW - climate change KW - CMIP5 models KW - RCP scenarios KW - sea-level projections KW - tide gauge observations Y1 - 2020 U6 - https://doi.org/10.1029/2019EF001413 SN - 2328-4277 VL - 8 IS - 9 SP - 1 EP - 25 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Leins, Johannes A. A1 - Grimm, Volker A1 - Drechsler, Martin T1 - Large-scale PVA modeling of insects in cultivated grasslands BT - the role of dispersal in mitigating the effects of management schedules under climate change JF - Ecology and evolution N2 - In many species, dispersal is decisive for survival in a changing climate. Simulation models for population dynamics under climate change thus need to account for this factor. Moreover, large numbers of species inhabiting agricultural landscapes are subject to disturbances induced by human land use. We included dispersal in the HiLEG model that we previously developed to study the interaction between climate change and agricultural land use in single populations. Here, the model was parameterized for the large marsh grasshopper (LMG) in cultivated grasslands of North Germany to analyze (1) the species development and dispersal success depending on the severity of climate change in subregions, (2) the additional effect of grassland cover on dispersal success, and (3) the role of dispersal in compensating for detrimental grassland mowing. Our model simulated population dynamics in 60-year periods (2020-2079) on a fine temporal (daily) and high spatial (250 x 250 m(2)) scale in 107 subregions, altogether encompassing a range of different grassland cover, climate change projections, and mowing schedules. We show that climate change alone would allow the LMG to thrive and expand, while grassland cover played a minor role. Some mowing schedules that were harmful to the LMG nevertheless allowed the species to moderately expand its range. Especially under minor climate change, in many subregions dispersal allowed for mowing early in the year, which is economically beneficial for farmers. More severe climate change could facilitate LMG expansion to uninhabited regions but would require suitable mowing schedules along the path. These insights can be transferred to other species, given that the LMG is considered a representative of grassland communities. For more specific predictions on the dynamics of other species affected by climate change and land use, the publicly available HiLEG model can be easily adapted to the characteristics of their life cycle. KW - bilinear interpolation KW - climate change KW - dispersal success KW - land use KW - large marsh grasshopper KW - spatially explicit model Y1 - 2022 U6 - https://doi.org/10.1002/ece3.9063 SN - 2045-7758 VL - 12 IS - 7 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Huber, Veronika A1 - Krummenauer, Linda A1 - Peña-Ortiz, Cristina A1 - Lange, Stefan A1 - Gasparrini, Antonio A1 - Vicedo-Cabrera, Ana Maria A1 - Garcia-Herrera, Ricardo A1 - Frieler, Katja T1 - Temperature-related excess mortality in German cities at 2 °C and higher degrees of global warming JF - Environmental Research N2 - Background: Investigating future changes in temperature-related mortality as a function of global mean temperature (GMT) rise allows for the evaluation of policy-relevant climate change targets. So far, only few studies have taken this approach, and, in particular, no such assessments exist for Germany, the most populated country of Europe. Methods: We assess temperature-related mortality in 12 major German cities based on daily time-series of all-cause mortality and daily mean temperatures in the period 1993-2015, using distributed-lag non-linear models in a two-stage design. Resulting risk functions are applied to estimate excess mortality in terms of GMT rise relative to pre-industrial levels, assuming no change in demographics or population vulnerability. Results: In the observational period, cold contributes stronger to temperature-related mortality than heat, with overall attributable fractions of 5.49% (95%CI: 3.82-7.19) and 0.81% (95%CI: 0.72-0.89), respectively. Future projections indicate that this pattern could be reversed under progressing global warming, with heat-related mortality starting to exceed cold-related mortality at 3 degrees C or higher GMT rise. Across cities, projected net increases in total temperature-related mortality were 0.45% (95%CI: -0.02-1.06) at 3 degrees C, 1.53% (95%CI: 0.96-2.06) at 4 degrees C, and 2.88% (95%CI: 1.60-4.10) at 5 degrees C, compared to today's warming level of 1 degrees C. By contrast, no significant difference was found between projected total temperature-related mortality at 2 degrees C versus 1 degrees C of GMT rise. Conclusions: Our results can inform current adaptation policies aimed at buffering the health risks from increased heat exposure under climate change. They also allow for the evaluation of global mitigation efforts in terms of local health benefits in some of Germany's most populated cities. KW - temperature-related mortality KW - climate change KW - Future projections KW - Germany KW - global mean temperature Y1 - 2020 U6 - https://doi.org/10.1016/j.envres.2020.109447 SN - 0013-9351 SN - 1096-0953 VL - 186 SP - 1 EP - 10 PB - Elsevier CY - San Diego, California ER - TY - JOUR A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Pestryakova, Luidmila Agafyevna A1 - Epp, Laura Saskia A1 - Herzschuh, Ulrike T1 - Phylogenetic diversity and environment form assembly rules for Arctic diatom genera BT - a study on recent and ancient sedimentary DNA JF - Journal of Biogeography N2 - Aim This study investigates taxonomic and phylogenetic diversity in diatom genera to evaluate assembly rules for eukaryotic microbes across the Siberian tree line. We first analysed how phylogenetic distance relates to taxonomic richness and turnover. Second, we used relatedness indices to evaluate if environmental filtering or competition influences the assemblies in space and through time. Third, we used distance-based ordination to test which environmental variables shape diatom turnover. Location Yakutia and Taymyria, Russia: we sampled 78 surface sediments and a sediment core, extending to 7,000 years before present, to capture the forest-tundra transition in space and time respectively. Taxon Arctic freshwater diatoms. Methods We applied metabarcoding to retrieve diatom diversity from surface and core sedimentary DNA. The taxonomic assignment binned sequence types (lineages) into genera and created taxonomic (abundance of lineages within different genera) and phylogenetic datasets (phylogenetic distances of lineages within different genera). Results Contrary to our expectations, we find a unimodal relationship between phylogenetic distance and richness in diatom genera. We discern a positive relationship between phylogenetic distance and taxonomic turnover in spatially and temporally distributed diatom genera. Furthermore, we reveal positive relatedness indices in diatom genera across the spatial environmental gradient and predominantly in time slices at a single location, with very few exceptions assuming effects of competition. Distance-based ordination of taxonomic and phylogenetic turnover indicates that lake environment variables, like HCO3- and water depth, largely explain diatom turnover. Main conclusion Phylogenetic and abiotic assembly rules are important in understanding the regional assembly of diatom genera across lakes in the Siberian tree line ecotone. Using a space-time approach we are able to exclude the influence of geography and elucidate that lake environmental variables primarily shape the assemblies. We conclude that some diatom genera have greater capabilities to adapt to environmental changes, whereas others will be putatively replaced or lost due to the displacement of the Arctic tundra biome under recent global warming. KW - ancient sedimentary DNA KW - Arctic lakes KW - assembly rules KW - climate change KW - diatoms KW - environmental filtering KW - phylogenetic diversity KW - Siberian tree line Y1 - 2020 U6 - https://doi.org/10.1111/jbi.13786 SN - 0305-0270 SN - 1365-2699 VL - 47 IS - 5 SP - 1166 EP - 1179 PB - Wiley-Blackwell CY - Oxford ER - TY - JOUR A1 - Hickmann, Thomas A1 - Widerberg, Oscar A1 - Lederer, Markus A1 - Pattberg, Philipp H. T1 - The United Nations Framework Convention on Climate Change Secretariat as an orchestrator in global climate policymaking JF - International review of administrative sciences : an international journal of comparative public administration N2 - Scholars have recently devoted increasing attention to the role and function of international bureaucracies in global policymaking. Some of them contend that international public officials have gained significant political influence in various policy fields. Compared to other international bureaucracies, the political leeway of the Secretariat of the United Nations Framework Convention on Climate Change has been considered rather limited. Due to the specific problem structure of the policy domain of climate change, national governments endowed this intergovernmental treaty secretariat with a relatively narrow mandate. However, this article argues that in the past few years, the United Nations Framework Convention on Climate Change Secretariat has gradually loosened its straitjacket and expanded its original spectrum of activity by engaging different sub-national and non-state actors into a policy dialogue using facilitative orchestration as a mode of governance. The present article explores the recent evolution of the United Nations Framework Convention on Climate Change Secretariat and investigates the way in which it initiates, guides, broadens and strengthens sub-national and non-state climate actions to achieve progress in the international climate negotiations.
Points for practitioners
The Secretariat of the United Nations Framework Convention on Climate Change has lately adopted new roles and functions in global climate policymaking. While previously seen as a rather technocratic body that, first and foremost, serves national governments, the Climate Secretariat increasingly interacts with sub-national governments, civil society organizations and private companies to push the global response to climate change forward. We contend that the Climate Secretariat can contribute to global climate policymaking by coordinating and steering the initiatives of non-nation-state actors towards coherence and good practice. KW - climate change KW - environmental policymaking KW - intergovernmental relations KW - international bureaucracies KW - sub-national and non-state actors Y1 - 2021 U6 - https://doi.org/10.1177/0020852319840425 SN - 0020-8523 SN - 1461-7226 VL - 87 IS - 1 SP - 21 EP - 38 PB - Sage CY - Los Angeles, Calif. [u.a.] ER - TY - JOUR A1 - Guzman Arias, Diego Alejandro A1 - Samprogna Mohor, Guilherme A1 - Mendiondo, Eduardo Mario T1 - Multi-driver ensemble to evaluate the water utility business interruption cost induced by hydrological drought risk scenarios in Brazil JF - Urban water journal N2 - Climate change and increasing water demand in urban environments necessitate planning water utility companies' finances. Traditionally, methods to estimate the direct water utility business interruption costs (WUBIC) caused by droughts have not been clearly established. We propose a multi-driver assessment method. We project the water yield using a hydrological model driven by regional climate models under radiative forcing scenarios. We project water demand under stationary and non-stationary conditions to estimate drought severity and duration, which are linked with pricing policies recently adopted by the Sao Paulo Water Utility Company. The results showed water insecurity. The non-stationary trend imposed larger differences in the drought resilience financial gap, suggesting that the uncertainties of WUBIC derived from demand and climate models are greater than those associated with radiative forcing scenarios. As populations increase, proactively controlling demand is recommended to avoid or minimize reactive policy changes during future drought events, repeating recent financial impacts. KW - Business interruption cost KW - water utility company KW - hydrological KW - droughts KW - water security KW - urban water KW - climate change Y1 - 2022 U6 - https://doi.org/10.1080/1573062X.2022.2058564 SN - 1573-062X SN - 1744-9006 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Warszawski, Lila A1 - Kriegler, Elmar A1 - Lenton, Timothy M. A1 - Gaffney, Owen A1 - Jacob, Daniela A1 - Klingenfeld, Daniel A1 - Koide, Ryu A1 - Costa, María Máñez A1 - Messner, Dirk A1 - Nakicenovic, Nebojsa A1 - Schellnhuber, Hans Joachim A1 - Schlosser, Peter A1 - Takeuchi, Kazuhiko A1 - van der Leeuw, Sander A1 - Whiteman, Gail A1 - Rockström, Johan T1 - All options, not silver bullets, needed to limit global warming to 1.5 °C BT - a scenario appraisal JF - Environmental research letters N2 - Climate science provides strong evidence of the necessity of limiting global warming to 1.5 °C, in line with the Paris Climate Agreement. The IPCC 1.5 °C special report (SR1.5) presents 414 emissions scenarios modelled for the report, of which around 50 are classified as '1.5 °C scenarios', with no or low temperature overshoot. These emission scenarios differ in their reliance on individual mitigation levers, including reduction of global energy demand, decarbonisation of energy production, development of land-management systems, and the pace and scale of deploying carbon dioxide removal (CDR) technologies. The reliance of 1.5 °C scenarios on these levers needs to be critically assessed in light of the potentials of the relevant technologies and roll-out plans. We use a set of five parameters to bundle and characterise the mitigation levers employed in the SR1.5 1.5 °C scenarios. For each of these levers, we draw on the literature to define 'medium' and 'high' upper bounds that delineate between their 'reasonable', 'challenging' and 'speculative' use by mid century. We do not find any 1.5 °C scenarios that stay within all medium upper bounds on the five mitigation levers. Scenarios most frequently 'over use' CDR with geological storage as a mitigation lever, whilst reductions of energy demand and carbon intensity of energy production are 'over used' less frequently. If we allow mitigation levers to be employed up to our high upper bounds, we are left with 22 of the SR1.5 1.5 °C scenarios with no or low overshoot. The scenarios that fulfil these criteria are characterised by greater coverage of the available mitigation levers than those scenarios that exceed at least one of the high upper bounds. When excluding the two scenarios that exceed the SR1.5 carbon budget for limiting global warming to 1.5 °C, this subset of 1.5 °C scenarios shows a range of 15–22 Gt CO2 (16–22 Gt CO2 interquartile range) for emissions in 2030. For the year of reaching net zero CO2 emissions the range is 2039–2061 (2049–2057 interquartile range). KW - climate change KW - emissions scenarios KW - 1.5 ◦C KW - negative emissions Y1 - 2021 U6 - https://doi.org/10.1088/1748-9326/abfeec SN - 1748-9326 N1 - Corrigendum: 10.1088/1748-9326/acbf6a VL - 16 IS - 6 PB - IOP Publishing CY - Bristol ER - TY - JOUR A1 - Böhnke, Denise A1 - Krehl, Alice A1 - Moermann, Kai A1 - Volk, Rebekka A1 - Lützkendorf, Thomas A1 - Naber, Elias A1 - Becker, Ronja A1 - Norra, Stefan T1 - Mapping urban green and its ecosystem services at microscale-a methodological approach for climate adaptation and biodiversity JF - Sustainability / Multidisciplinary Digital Publishing Institute (MDPI) N2 - The current awareness of the high importance of urban green leads to a stronger need for tools to comprehensively represent urban green and its benefits. A common scientific approach is the development of urban ecosystem services (UES) based on remote sensing methods at the city or district level. Urban planning, however, requires fine-grained data that match local management practices. Hence, this study linked local biotope and tree mapping methods to the concept of ecosystem services. The methodology was tested in an inner-city district in SW Germany, comparing publicly accessible areas and non-accessible courtyards. The results provide area-specific [m(2)] information on the green inventory at the microscale, whereas derived stock and UES indicators form the basis for comparative analyses regarding climate adaptation and biodiversity. In the case study, there are ten times more micro-scale green spaces in private courtyards than in the public space, as well as twice as many trees. The approach transfers a scientific concept into municipal planning practice, enables the quantitative assessment of urban green at the microscale and illustrates the importance for green stock data in private areas to enhance decision support in urban development. Different aspects concerning data collection and data availability are critically discussed. KW - climate adaptation KW - urban green KW - mapping KW - ecosystem service cascade KW - model KW - surface type-function-concept KW - planning indicators KW - city district KW - level KW - urban planning practice KW - climate change Y1 - 2022 U6 - https://doi.org/10.3390/su14159029 SN - 2071-1050 VL - 14 IS - 15 PB - MDPI CY - Basel ER - TY - JOUR A1 - Sedova, Barbora A1 - Kalkuhl, Matthias A1 - Mendelsohn, Robert T1 - Distributional impacts of weather and climate in rural India JF - Economics of disasters and climate change N2 - Climate-related costs and benefits may not be evenly distributed across the population. We study distributional implications of seasonal weather and climate on within-country inequality in rural India. Utilizing a first difference approach, we find that the poor are more sensitive to weather variations than the non-poor. The poor respond more strongly to (seasonal) temperature changes: negatively in the (warm) spring season, more positively in the (cold) rabi season. Less precipitation is harmful to the poor in the monsoon kharif season and beneficial in the winter and spring seasons. We show that adverse weather aggravates inequality by reducing consumption of the poor farming households. Future global warming predicted under RCP8.5 is likely to exacerbate these effects, reducing consumption of poor farming households by one third until the year 2100. We also find inequality in consumption across seasons with higher consumption during the harvest and lower consumption during the sowing seasons. KW - climate change KW - weather KW - inequality KW - household analysis KW - India KW - econometrics Y1 - 2019 U6 - https://doi.org/10.1007/s41885-019-00051-1 SN - 2511-1280 SN - 2511-1299 VL - 4 IS - 1 SP - 5 EP - 44 PB - Springer CY - Cham ER - TY - JOUR A1 - Kalkuhl, Matthias A1 - Wenz, Leonie T1 - The impact of climate conditions on economic production BT - evidence from a global panel of regions JF - Journal of Environmental Economics and Management N2 - We present a novel data set of subnational economic output, Gross Regional Product (GRP), for more than 1500 regions in 77 countries that allows us to empirically estimate historic climate impacts at different time scales. Employing annual panel models, long-difference regressions and cross-sectional regressions, we identify effects on productivity levels and productivity growth. We do not find evidence for permanent growth rate impacts but we find robust evidence that temperature affects productivity levels considerably. An increase in global mean surface temperature by about 3.5°C until the end of the century would reduce global output by 7–14% in 2100, with even higher damages in tropical and poor regions. Updating the DICE damage function with our estimates suggests that the social cost of carbon from temperature-induced productivity losses is on the order of 73–142$/tCO2 in 2020, rising to 92–181$/tCO2 in 2030. These numbers exclude non-market damages and damages from extreme weather events or sea-level rise. KW - climate change KW - climate damages KW - climate impacts KW - growth regression KW - global warming KW - panel regression KW - cross-sectional regression KW - damage KW - function KW - social costs of carbon Y1 - 2020 U6 - https://doi.org/10.1016/j.jeem.2020.102360 SN - 0095-0696 SN - 1096-0449 VL - 103 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Schultes, Anselm A1 - Piontek, Franziska A1 - Soergel, Bjoern A1 - Rogelj, Joeri A1 - Baumstark, Lavinia A1 - Kriegler, Elmar A1 - Edenhofer, Ottmar A1 - Luderer, Gunnar T1 - Economic damages from on-going climate change imply deeper near-term emission cuts JF - Environmental research letters N2 - Pathways toward limiting global warming to well below 2 ∘C, as used by the IPCC in the Fifth Assessment Report, do not consider the climate impacts already occurring below 2 ∘C. Here we show that accounting for such damages significantly increases the near-term ambition of transformation pathways. We use econometric estimates of climate damages on GDP growth and explicitly model the uncertainty in the persistence time of damages. The Integrated Assessment Model we use includes the climate system and mitigation technology detail required to derive near-term policies. We find an optimal carbon price of $115 per tonne of CO2 in 2030. The long-term persistence of damages, while highly uncertain, is a main driver of the near-term carbon price. Accounting for damages on economic growth increases the gap between the currently pledged nationally determined contributions and the welfare-optimal 2030 emissions by two thirds, compared to pathways considering the 2 ∘C limit only. KW - climate change KW - climate mitigation KW - climate impacts KW - integrated assessment Y1 - 2021 U6 - https://doi.org/10.1088/1748-9326/ac27ce SN - 1748-9326 VL - 16 IS - 10 PB - IOP Publishing CY - Bristol ER - TY - JOUR A1 - Han, Sungju A1 - Kuhlicke, Christian T1 - Barriers and drivers for mainstreaming nature-based solutions for flood risks BT - the case of South Korea JF - International journal of disaster risk science N2 - Nature-based solutions (NBS) are seen as a promising adaptation measure that sustainably deals with diverse societal challenges, while simultaneously delivering multiple benefits. Nature-based solutions have been highlighted as a resilient and sustainable means of mitigating floods and other hazards globally. This study examined diverging conceptualizations of NBS, as well as the attitudinal (for example, emotions and beliefs) and contextual (for example, legal and political aspects) barriers and drivers of NBS for flood risks in South Korea. Semistructured interviews were conducted with 11 experts and focused on the topic of flood risk measures and NBS case studies. The analysis found 11 barriers and five drivers in the attitudinal domain, and 13 barriers and two drivers in the contextual domain. Most experts see direct monetary benefits as an important attitudinal factor for the public. Meanwhile, the cost-effectiveness of NBS and their capacity to cope with flood risks were deemed influential factors that could lead decision makers to opt for NBS. Among the contextual factors, insufficient systems to integrate NBS in practice and the ideologicalization of NBS policy were found to be peculiar barriers, which hinder consistent realization of initiatives and a long-term national plan for NBS. Understanding the barriers and drivers related to the mainstreaming of NBS is critical if we are to make the most of such solutions for society and nature. It is also essential that we have a shared definition, expectation, and vision of NBS. KW - climate change KW - flood risk management KW - nature-based solutions (NBS) KW - South Korea Y1 - 2021 U6 - https://doi.org/10.1007/s13753-021-00372-4 SN - 2095-0055 SN - 2192-6395 VL - 12 IS - 5 SP - 661 EP - 672 PB - Springer CY - New York ER -