TY - JOUR A1 - Schüler, Lennart A1 - Calabrese, Justin M. A1 - Attinger, Sabine T1 - Data driven high resolution modeling and spatial analyses of the COVID-19 pandemic in Germany JF - PLoS one N2 - The SARS-CoV-2 virus has spread around the world with over 100 million infections to date, and currently many countries are fighting the second wave of infections. With neither sufficient vaccination capacity nor effective medication, non-pharmaceutical interventions (NPIs) remain the measure of choice. However, NPIs place a great burden on society, the mental health of individuals, and economics. Therefore the cost/benefit ratio must be carefully balanced and a target-oriented small-scale implementation of these NPIs could help achieve this balance. To this end, we introduce a modified SEIRD-class compartment model and parametrize it locally for all 412 districts of Germany. The NPIs are modeled at district level by time varying contact rates. This high spatial resolution makes it possible to apply geostatistical methods to analyse the spatial patterns of the pandemic in Germany and to compare the results of different spatial resolutions. We find that the modified SEIRD model can successfully be fitted to the COVID-19 cases in German districts, states, and also nationwide. We propose the correlation length as a further measure, besides the weekly incidence rates, to describe the current situation of the epidemic. Y1 - 2021 U6 - https://doi.org/10.1371/journal.pone.0254660 SN - 1932-6203 VL - 16 IS - 8 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Sarrazin, Fanny J. A1 - Kumar, Rohini A1 - Basu, Nandita B. A1 - Musolff, Andreas A1 - Weber, Michael A1 - Van Meter, Kimberly J. A1 - Attinger, Sabine T1 - Characterizing catchment-scale nitrogen legacies and constraining their uncertainties JF - Water resources research N2 - Improving nitrogen (N) status in European water bodies is a pressing issue. N levels depend not only on current but also past N inputs to the landscape, that have accumulated through time in legacy stores (e.g., soil, groundwater). Catchment-scale N models, that are commonly used to investigate in-stream N levels, rarely examine the magnitude and dynamics of legacy components. This study aims to gain a better understanding of the long-term fate of the N inputs and its uncertainties, using a legacy-driven N model (ELEMeNT) in Germany's largest national river basin (Weser; 38,450 km(2)) over the period 1960-2015. We estimate the nine model parameters based on a progressive constraining strategy, to assess the value of different observational data sets. We demonstrate that beyond in-stream N loading, soil N content and in-stream N concentration allow to reduce the equifinality in model parameterizations. We find that more than 50% of the N surplus denitrifies (1480-2210 kg ha(-1)) and the stream export amounts to around 18% (410-640 kg ha(-1)), leaving behind as much as around 230-780 kg ha(-1) of N in the (soil) source zone and 10-105 kg ha(-1) in the subsurface. A sensitivity analysis reveals the importance of different factors affecting the residual uncertainties in simulated N legacies, namely hydrologic travel time, denitrification rates, a coefficient characterizing the protection of organic N in source zone and N surplus input. Our study calls for proper consideration of uncertainties in N legacy characterization, and discusses possible avenues to further reduce the equifinality in water quality modeling. KW - nitrogen legacies KW - water quality modeling KW - equifinality KW - parameter KW - estimation KW - sensitivity analysis Y1 - 2022 U6 - https://doi.org/10.1029/2021WR031587 SN - 0043-1397 SN - 1944-7973 VL - 58 IS - 4 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Nguyen, Tam A1 - Kumar, Rohini A1 - Musolff, Andreas A1 - Lutz, Stefanie R. A1 - Sarrazin, Fanny A1 - Attinger, Sabine A1 - Fleckenstein, Jan H. T1 - Disparate Seasonal Nitrate Export From Nested Heterogeneous Subcatchments Revealed With StorAge Selection Functions JF - Water resources research N2 - Understanding catchment controls on catchment solute export is a prerequisite for water quality management. StorAge Selection (SAS) functions encapsulate essential information about catchment functioning in terms of discharge selection preference and solute export dynamics. However, they lack information on the spatial origin of solutes when applied at the catchment scale, thereby limiting our understanding of the internal (subcatchment) functioning. Here, we parameterized SAS functions in a spatially explicit way to understand the internal catchment responses and transport dynamics of reactive dissolved nitrate (N-NO3). The model was applied in a nested mesoscale catchment (457 km(2)), consisting of a mountainous partly forested, partly agricultural subcatchment, a middle-reach forested subcatchment, and a lowland agricultural subcatchment. The model captured flow and nitrate concentration dynamics not only at the catchment outlet but also at internal gauging stations. Results reveal disparate subsurface mixing dynamics and nitrate export among headwater and lowland subcatchments. The headwater subcatchment has high seasonal variation in subsurface mixing schemes and younger water in discharge, while the lowland subcatchment has less pronounced seasonality in subsurface mixing and much older water in discharge. Consequently, nitrate concentration in discharge from the headwater subcatchment shows strong seasonality, whereas that from the lowland subcatchment is stable in time. The temporally varying responses of headwater and lowland subcatchments alternate the dominant contribution to nitrate export in high and low-flow periods between subcatchments. Overall, our results demonstrate that the spatially explicit SAS modeling provides useful information about internal catchment functioning, helping to develop or evaluate spatial management practices. KW - catchment nitrate export KW - StorAge Selection function KW - travel time distribution KW - mesoscale heterogeneous catchment KW - subcatchment response Y1 - 2022 U6 - https://doi.org/10.1029/2021WR030797 SN - 0043-1397 SN - 1944-7973 VL - 58 IS - 3 PB - American Geophysical Union CY - Washington ER - TY - GEN A1 - Kumar, Rohini A1 - Hesse, Fabienne A1 - Rao, P. Srinivasa A1 - Musolff, Andreas A1 - Jawitz, James A1 - Sarrazin, Francois A1 - Samaniego, Luis A1 - Fleckenstein, Jan H. A1 - Rakovec, Oldrich A1 - Thober, S. A1 - Attinger, Sabine T1 - Strong hydroclimatic controls on vulnerability to subsurface nitrate contamination across Europe T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Subsurface contamination due to excessive nutrient surpluses is a persistent and widespread problem in agricultural areas across Europe. The vulnerability of a particular location to pollution from reactive solutes, such as nitrate, is determined by the interplay between hydrologic transport and biogeochemical transformations. Current studies on the controls of subsurface vulnerability do not consider the transient behaviour of transport dynamics in the root zone. Here, using state-of-the-art hydrologic simulations driven by observed hydroclimatic forcing, we demonstrate the strong spatiotemporal heterogeneity of hydrologic transport dynamics and reveal that these dynamics are primarily controlled by the hydroclimatic gradient of the aridity index across Europe. Contrasting the space-time dynamics of transport times with reactive timescales of denitrification in soil indicate that similar to 75% of the cultivated areas across Europe are potentially vulnerable to nitrate leaching for at least onethird of the year. We find that neglecting the transient nature of transport and reaction timescale results in a great underestimation of the extent of vulnerable regions by almost 50%. Therefore, future vulnerability and risk assessment studies must account for the transient behaviour of transport and biogeochemical transformation processes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1352 KW - travel time distributions KW - groundwater vulnerability KW - flux tracking KW - transit-time KW - water age KW - nitrogen KW - model KW - dynamics KW - pollution KW - patterns Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-549875 SN - 1866-8372 IS - 1 ER - TY - JOUR A1 - Kumar, Rohini A1 - Hesse, Fabienne A1 - Rao, P. Srinivasa A1 - Musolff, Andreas A1 - Jawitz, James A1 - Sarrazin, Francois A1 - Samaniego, Luis A1 - Fleckenstein, Jan H. A1 - Rakovec, Oldrich A1 - Thober, S. A1 - Attinger, Sabine T1 - Strong hydroclimatic controls on vulnerability to subsurface nitrate contamination across Europe JF - Nature Communications N2 - Subsurface contamination due to excessive nutrient surpluses is a persistent and widespread problem in agricultural areas across Europe. The vulnerability of a particular location to pollution from reactive solutes, such as nitrate, is determined by the interplay between hydrologic transport and biogeochemical transformations. Current studies on the controls of subsurface vulnerability do not consider the transient behaviour of transport dynamics in the root zone. Here, using state-of-the-art hydrologic simulations driven by observed hydroclimatic forcing, we demonstrate the strong spatiotemporal heterogeneity of hydrologic transport dynamics and reveal that these dynamics are primarily controlled by the hydroclimatic gradient of the aridity index across Europe. Contrasting the space-time dynamics of transport times with reactive timescales of denitrification in soil indicate that similar to 75% of the cultivated areas across Europe are potentially vulnerable to nitrate leaching for at least onethird of the year. We find that neglecting the transient nature of transport and reaction timescale results in a great underestimation of the extent of vulnerable regions by almost 50%. Therefore, future vulnerability and risk assessment studies must account for the transient behaviour of transport and biogeochemical transformation processes. KW - travel time distributions KW - groundwater vulnerability KW - flux tracking KW - transit-time KW - water age KW - nitrogen KW - model KW - dynamics KW - pollution KW - patterns Y1 - 2020 U6 - https://doi.org/10.1038/s41467-020-19955-8 SN - 2041-1723 VL - 11 IS - 1 SP - 1 EP - 10 PB - Nature Publishing Group UK CY - London ER - TY - JOUR A1 - Schmidt, Lennart A1 - Hesse, Falk A1 - Attinger, Sabine A1 - Kumar, Rohini T1 - Challenges in applying machine learning models for hydrological inference BT - a case study for flooding events across Germany JF - Water resources research N2 - Machine learning (ML) algorithms are being increasingly used in Earth and Environmental modeling studies owing to the ever-increasing availability of diverse data sets and computational resources as well as advancement in ML algorithms. Despite advances in their predictive accuracy, the usefulness of ML algorithms for inference remains elusive. In this study, we employ two popular ML algorithms, artificial neural networks and random forest, to analyze a large data set of flood events across Germany with the goals to analyze their predictive accuracy and their usability to provide insights to hydrologic system functioning. The results of the ML algorithms are contrasted against a parametric approach based on multiple linear regression. For analysis, we employ a model-agnostic framework named Permuted Feature Importance to derive the influence of models' predictors. This allows us to compare the results of different algorithms for the first time in the context of hydrology. Our main findings are that (1) the ML models achieve higher prediction accuracy than linear regression, (2) the results reflect basic hydrological principles, but (3) further inference is hindered by the heterogeneity of results across algorithms. Thus, we conclude that the problem of equifinality as known from classical hydrological modeling also exists for ML and severely hampers its potential for inference. To account for the observed problems, we propose that when employing ML for inference, this should be made by using multiple algorithms and multiple methods, of which the latter should be embedded in a cross-validation routine. KW - machine learning KW - inference KW - floods Y1 - 2020 U6 - https://doi.org/10.1029/2019WR025924 SN - 0043-1397 SN - 1944-7973 VL - 56 IS - 5 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Ayllon, Daniel A1 - Grimm, Volker A1 - Attinger, Sabine A1 - Hauhs, Michael A1 - Simmer, Clemens A1 - Vereecken, Harry A1 - Lischeid, Gunnar T1 - Cross-disciplinary links in environmental systems science BT - Current state and claimed needs identified in a meta-review of process models JF - The science of the total environment : an international journal for scientific research into the environment and its relationship with man N2 - Terrestrial environmental systems are characterised by numerous feedback links between their different compartments. However, scientific research is organized into disciplines that focus on processes within the respective compartments rather than on interdisciplinary links. Major feedback mechanisms between compartments might therefore have been systematically overlooked so far. Without identifying these gaps, initiatives on future comprehensive environmental monitoring schemes and experimental platforms might fail. We performed a comprehensive overview of feedbacks between compartments currently represented in environmental sciences and explores to what degree missing links have already been acknowledged in the literature. We focused on process models as they can be regarded as repositories of scientific knowledge that compile findings of numerous single studies. In total, 118 simulation models from 23 model types were analysed. Missing processes linking different environmental compartments were identified based on a meta-review of 346 published reviews, model inter-comparison studies, and model descriptions. Eight disciplines of environmental sciences were considered and 396 linking processes were identified and ascribed to the physical, chemical or biological domain. There were significant differences between model types and scientific disciplines regarding implemented interdisciplinary links. The most wide-spread interdisciplinary links were between physical processes in meteorology, hydrology and soil science that drive or set the boundary conditions for other processes (e.g., ecological processes). In contrast, most chemical and biological processes were restricted to links within the same compartment. Integration of multiple environmental compartments and interdisciplinary knowledge was scarce in most model types. There was a strong bias of suggested future research foci and model extensions towards reinforcing existing interdisciplinary knowledge rather than to open up new interdisciplinary pathways. No clear pattern across disciplines exists with respect to suggested future research efforts. There is no evidence that environmental research would clearly converge towards more integrated approaches or towards an overarching environmental systems theory. (c) 2017 Elsevier B.V. All rights reserved. KW - Review KW - Interdisciplinary links KW - Integrated environmental modelling KW - Research needs Y1 - 2018 U6 - https://doi.org/10.1016/j.scitotenv.2017.12.007 SN - 0048-9697 SN - 1879-1026 VL - 622 SP - 954 EP - 973 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Jing, Miao A1 - Hesse, Falk A1 - Kumar, Rohini A1 - Wang, Wenqing A1 - Fischer, Thomas A1 - Walther, Marc A1 - Zink, Matthias A1 - Zech, Alraune A1 - Samaniego, Luis A1 - Kolditz, Olaf A1 - Attinger, Sabine T1 - Improved regional-scale groundwater representation by the coupling of the mesoscale Hydrologic Model (mHM v5.7) to the groundwater model OpenGeoSys (OGS) JF - Geoscientific model development : an interactive open access journal of the European Geosciences Union N2 - Most large-scale hydrologic models fall short in reproducing groundwater head dynamics and simulating transport process due to their oversimplified representation of groundwater flow. In this study, we aim to extend the applicability of the mesoscale Hydrologic Model (mHM v5.7) to subsurface hydrology by coupling it with the porous media simulator OpenGeoSys (OGS). The two models are one-way coupled through model interfaces GIS2FEM and RIV2FEM, by which the grid-based fluxes of groundwater recharge and the river-groundwater exchange generated by mHM are converted to fixed-flux boundary conditions of the groundwater model OGS. Specifically, the grid-based vertical reservoirs in mHM are completely preserved for the estimation of land-surface fluxes, while OGS acts as a plug-in to the original mHM modeling framework for groundwater flow and transport modeling. The applicability of the coupled model (mHM-OGS v1.0) is evaluated by a case study in the central European mesoscale river basin - Nagelstedt. Different time steps, i.e., daily in mHM and monthly in OGS, are used to account for fast surface flow and slow groundwater flow. Model calibration is conducted following a two-step procedure using discharge for mHM and long-term mean of groundwater head measurements for OGS. Based on the model summary statistics, namely the Nash-Sutcliffe model efficiency (NSE), the mean absolute error (MAE), and the interquartile range error (QRE), the coupled model is able to satisfactorily represent the dynamics of discharge and groundwater heads at several locations across the study basin. Our exemplary calculations show that the one-way coupled model can take advantage of the spatially explicit modeling capabilities of surface and groundwater hydrologic models and provide an adequate representation of the spatiotemporal behaviors of groundwater storage and heads, thus making it a valuable tool for addressing water resources and management problems. Y1 - 2018 U6 - https://doi.org/10.5194/gmd-11-1989-2018 SN - 1991-959X SN - 1991-9603 VL - 11 IS - 5 SP - 1989 EP - 2007 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Baroni, Gabriele A1 - Zink, Matthias A1 - Kumar, Rohini A1 - Samaniego, Luis A1 - Attinger, Sabine T1 - Effects of uncertainty in soil properties on simulated hydrological states and fluxes at different spatio-temporal scales JF - Hydrology and earth system sciences : HESS N2 - Soil properties show high heterogeneity at different spatial scales and their correct characterization remains a crucial challenge over large areas. The aim of the study is to quantify the impact of different types of uncertainties that arise from the unresolved soil spatial variability on simulated hydrological states and fluxes. Three perturbation methods are presented for the characterization of uncertainties in soil properties. The methods are applied on the soil map of the upper Neckar catchment (Germany), as an example. The uncertainties are propagated through the distributed mesoscale hydrological model (mHM) to assess the impact on the simulated states and fluxes. The model outputs are analysed by aggregating the results at different spatial and temporal scales. These results show that the impact of the different uncertainties introduced in the original soil map is equivalent when the simulated model outputs are analysed at the model grid resolution (i.e. 500 m). However, several differences are identified by aggregating states and fluxes at different spatial scales (by subcatchments of different sizes or coarsening the grid resolution). Streamflow is only sensitive to the perturbation of long spatial structures while distributed states and fluxes (e.g. soil moisture and groundwater recharge) are only sensitive to the local noise introduced to the original soil properties. A clear identification of the temporal and spatial scale for which finer-resolution soil information is (or is not) relevant is unlikely to be universal. However, the comparison of the impacts on the different hydrological components can be used to prioritize the model improvements in specific applications, either by collecting new measurements or by calibration and data assimilation approaches. In conclusion, the study underlines the importance of a correct characterization of uncertainty in soil properties. With that, soil maps with additional information regarding the unresolved soil spatial variability would provide strong support to hydrological modelling applications. Y1 - 2017 U6 - https://doi.org/10.5194/hess-21-2301-2017 SN - 1027-5606 SN - 1607-7938 VL - 21 SP - 2301 EP - 2320 PB - Copernicus CY - Göttingen ER - TY - GEN A1 - Heße, Falk A1 - Comunian, Alessandro A1 - Attinger, Sabine T1 - What We Talk About When We Talk About Uncertainty BT - Toward a Unified, Data-Driven Framework for Uncertainty Characterization in Hydrogeology T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 754 KW - Bayesianism KW - uncertainty analysis KW - hydrogeology KW - data science KW - opinion KW - prior derivation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436582 SN - 1866-8372 IS - 754 ER - TY - JOUR A1 - Heße, Falk A1 - Comunian, Alessandro A1 - Attinger, Sabine T1 - What We Talk About When We Talk About Uncertainty BT - Toward a Unified, Data-Driven Framework for Uncertainty Characterization in Hydrogeology JF - Frontiers in Earth Science KW - Bayesianism KW - uncertainty analysis KW - hydrogeology KW - data science KW - opinion KW - prior derivation Y1 - 2019 U6 - https://doi.org/10.3389/feart.2019.00118 SN - 2296-6463 VL - 7 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Al-Mashaikhi, K. A1 - Oswald, Sascha A1 - Attinger, Sabine A1 - Büchel, G. A1 - Knöller, K. A1 - Strauch, G. T1 - Evaluation of groundwater dynamics and quality in the Najd aquifers located in the Sultanate of Oman JF - Environmental earth sciences N2 - The Najd, Oman, is located in one of the most arid environments in the world. The groundwater in this region is occurring in four different aquifers A to D of the Hadhramaut Group consisting mainly of different types of limestone and dolomite. The quality of the groundwater is dominated by the major ions sodium, calcium, magnesium, sulphate, and chloride, but the hydrochemical character is varying among the four aquifers. Mineralization within the separate aquifers increases along the groundwater flow direction from south to north-northeast up to high saline sodium-chloride water in aquifer D in the northeast area of the Najd. Environmental isotope analyses of hydrogen and oxygen were conducted to monitor the groundwater dynamics and to evaluate the recharge conditions of groundwater into the Najd aquifers. Results suggest an earlier recharge into these aquifers as well as ongoing recharge takes place in the region down to present day. Mixing of modern and submodern waters was detected by water isotopes in aquifer D in the mountain chain (Jabal) area and along the northern side of the mountain range. In addition, delta H-2 and delta O-18 variations suggest that aquifers A, B, and C are assumed to be connected by faults and fractures, and interaction between the aquifers may occur. Low tritium concentrations support the mixing assumption in the recharge area. The knowledge about the groundwater development is an important factor for the sustainable use of water resources in the Dhofar region. KW - Environmental isotopes KW - Groundwater KW - Najd aquifer KW - Oman KW - Recharge KW - Water quality Y1 - 2012 U6 - https://doi.org/10.1007/s12665-011-1331-2 SN - 1866-6280 VL - 66 IS - 4 SP - 1195 EP - 1211 PB - Springer CY - New York ER -