TY - JOUR A1 - Li, Mingjun A1 - Schlaich, Christoph A1 - Zhang, Jianguang A1 - Donskyi, Ievgen A1 - Schwibbert, Karin A1 - Schreiber, Frank A1 - Xia, Yi A1 - Radnik, Jörg A1 - Schwerdtle, Tanja A1 - Haag, Rainer T1 - Mussel-inspired multifunctional coating for bacterial infection prevention and osteogenic induction JF - Journal of materials science & technology : JMST ; an international journal / spons. by the Chinese Society for Metals (CSM), the Chinese Materials Research Society (CMRS), Institute of Metal Research, Chinese Academy of Sciences N2 - Bacterial infection and osteogenic integration are the two main problems that cause severe complications after surgeries. In this study, the antibacterial and osteogenic properties were simultaneously introduced in biomaterials, where copper nanoparticles (CuNPs) were generated by in situ reductions of Cu ions into a mussel-inspired hyperbranched polyglycerol (MI-hPG) coating via a simple dip-coating method. This hyperbranched polyglycerol with 10 % catechol groups' modification presents excellent antifouling property, which could effectively reduce bacteria adhesion on the surface. In this work, polycaprolactone (PCL) electrospun fiber membrane was selected as the substrate, which is commonly used in biomedical implants in bone regeneration and cardiovascular stents because of its good biocompatibility and easy post-modification. The as-fabricated CuNPs-incorporated PCL membrane [PCL-(MI-hPG)-CuNPs] was confirmed with effective antibacterial performance via in vitro antibacterial tests against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and multi-resistant E. coli. In addition, the in vitro results demonstrated that osteogenic property of PCL-(MI-hPG)-CuNPs was realized by upregulating the osteoblast-related gene expressions and protein activity. This study shows that antibacterial and osteogenic properties can be balanced in a surface coating by introducing CuNPs. KW - Mussel-inspired coating KW - CuNPs KW - Multi-resistant bacteria KW - Antibacterial KW - Antifouling KW - Osteogenesis Y1 - 2021 U6 - https://doi.org/10.1016/j.jmst.2020.08.011 SN - 1005-0302 SN - 1941-1162 VL - 68 SP - 160 EP - 171 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Wilhelmi, Ilka A1 - Neumann, Alexander A1 - Jähnert, Markus A1 - Ouni, Meriem A1 - Schürmann, Annette T1 - Enriched alternative splicing in islets of diabetes-susceptible mice JF - International journal of molecular sciences N2 - Dysfunctional islets of Langerhans are a hallmark of type 2 diabetes (T2D). We hypothesize that differences in islet gene expression alternative splicing which can contribute to altered protein function also participate in islet dysfunction. RNA sequencing (RNAseq) data from islets of obese diabetes-resistant and diabetes-susceptible mice were analyzed for alternative splicing and its putative genetic and epigenetic modulators. We focused on the expression levels of chromatin modifiers and SNPs in regulatory sequences. We identified alternative splicing events in islets of diabetes-susceptible mice amongst others in genes linked to insulin secretion, endocytosis or ubiquitin-mediated proteolysis pathways. The expression pattern of 54 histones and chromatin modifiers, which may modulate splicing, were markedly downregulated in islets of diabetic animals. Furthermore, diabetes-susceptible mice carry SNPs in RNA-binding protein motifs and in splice sites potentially responsible for alternative splicing events. They also exhibit a larger exon skipping rate, e.g., in the diabetes gene Abcc8, which might affect protein function. Expression of the neuronal splicing factor Srrm4 which mediates inclusion of microexons in mRNA transcripts was markedly lower in islets of diabetes-prone compared to diabetes-resistant mice, correlating with a preferential skipping of SRRM4 target exons. The repression of Srrm4 expression is presumably mediated via a higher expression of miR-326-3p and miR-3547-3p in islets of diabetic mice. Thus, our study suggests that an altered splicing pattern in islets of diabetes-susceptible mice may contribute to an elevated T2D risk. KW - alternative splicing KW - epigenetic KW - MicroRNA KW - RNAseq KW - diabetes KW - beta-cell KW - failure Y1 - 2021 U6 - https://doi.org/10.3390/ijms22168597 SN - 1422-0067 VL - 22 IS - 16 PB - Molecular Diversity Preservation International CY - Basel ER - TY - CHAP A1 - Loßow, Kristina A1 - Schwarz, Maria A1 - Kopp, Johannes A1 - Schwerdtle, Tanja A1 - Kipp, Anna Patricia T1 - Age- and sex-dependent changes of trace elements and redox parameters in mice T2 - Free radical biology and medicine : the official journal of the Oxygen Society, a constituent member of the International Society for Free Radical Research Y1 - 2021 U6 - https://doi.org/10.1016/j.freeradbiomed.2020.12.346 SN - 0891-5849 SN - 1873-4596 VL - 165 IS - Suppl. 1 SP - 34 PB - Elsevier CY - New York ER - TY - JOUR A1 - Polemiti, Elli A1 - Baudry, Julia A1 - Kuxhaus, Olga A1 - Jäger, Susanne A1 - Bergmann, Manuela A1 - Weikert, Cornelia A1 - Schulze, Matthias Bernd T1 - BMI and BMI change following incident type 2 diabetes and risk of microvascular and macrovascular complications BT - the EPIC-Potsdam study JF - Diabetologia : journal of the European Association for the Study of Diabetes (EASD) N2 - Aims/hypothesis Studies suggest decreased mortality risk among people who are overweight or obese compared with individuals with normal weight in type 2 diabetes (obesity paradox). However, the relationship between body weight or weight change and microvascular vs macrovascular complications of type 2 diabetes remains unresolved. We investigated the association between BMI and BMI change with long-term risk of microvascular and macrovascular complications in type 2 diabetes in a prospective cohort study. Methods We studied participants with incident type 2 diabetes from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort, who were free of cancer, cardiovascular disease and microvascular disease at diagnosis (n = 1083). Pre-diagnosis BMI and relative annual change between pre- and post-diagnosis BMI were evaluated in multivariable-adjusted Cox models. Results There were 85 macrovascular (myocardial infarction and stroke) and 347 microvascular events (kidney disease, neuropathy and retinopathy) over a median follow-up of 10.8 years. Median pre-diagnosis BMI was 29.9 kg/m(2) (IQR 27.4-33.2), and the median relative annual BMI change was -0.4% (IQR -2.1 to 0.9). Higher pre-diagnosis BMI was positively associated with total microvascular complications (multivariable-adjusted HR per 5 kg/m(2) [95% CI]: 1.21 [1.07, 1.36], kidney disease 1.39 [1.21, 1.60] and neuropathy 1.12 [0.96, 1.31]) but not with macrovascular complications (HR 1.05 [95% CI 0.81, 1.36]). Analyses according to BMI categories corroborated these findings. Effect modification was not evident by sex, smoking status or age groups. In analyses according to BMI change categories, BMI loss of more than 1% indicated a decreased risk of total microvascular complications (HR 0.62 [95% CI 0.47, 0.80]), kidney disease (HR 0.57 [95% CI 0.40, 0.81]) and neuropathy (HR 0.73 [95% CI 0.52, 1.03]), compared with participants with a stable BMI; no clear association was observed for macrovascular complications (HR 1.04 [95% CI 0.62, 1.74]). The associations between BMI gain compared with stable BMI and diabetes-related vascular complications were less apparent. Associations were consistent across strata of sex, age, pre-diagnosis BMI or medication but appeared to be stronger among never-smokers compared with current or former smokers. Conclusions/interpretation Among people with incident type 2 diabetes, pre-diagnosis BMI was positively associated with microvascular complications, while a reduced risk was observed with weight loss when compared with stable weight. The relationships with macrovascular disease were less clear. KW - BMI KW - CVD KW - Diabetes-related vascular complications KW - Nephropathy KW - Neuropathy KW - T2D KW - Weight change Y1 - 2021 U6 - https://doi.org/10.1007/s00125-020-05362-7 SN - 0012-186X SN - 1432-0428 VL - 64 IS - 4 SP - 814 EP - 825 PB - Springer CY - Berlin ; Heidelberg ER - TY - JOUR A1 - Johann, Kornelia A1 - Kleinert, Maximilian A1 - Klaus, Susanne T1 - The role of GDF15 as a myomitokine JF - Cells N2 - Growth differentiation factor 15 (GDF15) is a cytokine best known for affecting systemic energy metabolism through its anorectic action. GDF15 expression and secretion from various organs and tissues is induced in different physiological and pathophysiological states, often linked to mitochondrial stress, leading to highly variable circulating GDF15 levels. In skeletal muscle and the heart, the basal expression of GDF15 is very low compared to other organs, but GDF15 expression and secretion can be induced in various stress conditions, such as intense exercise and acute myocardial infarction, respectively. GDF15 is thus considered as a myokine and cardiokine. GFRAL, the exclusive receptor for GDF15, is expressed in hindbrain neurons and activation of the GDF15-GFRAL pathway is linked to an increased sympathetic outflow and possibly an activation of the hypothalamic-pituitary-adrenal (HPA) stress axis. There is also evidence for peripheral, direct effects of GDF15 on adipose tissue lipolysis and possible autocrine cardiac effects. Metabolic and behavioral outcomes of GDF15 signaling can be beneficial or detrimental, likely depending on the magnitude and duration of the GDF15 signal. This is especially apparent for GDF15 production in muscle, which can be induced both by exercise and by muscle disease states such as sarcopenia and mitochondrial myopathy. KW - anorexia KW - appetite regulation KW - cardiokine KW - cytokine KW - exercise KW - mitochondria KW - muscle KW - myokine KW - myopathy KW - sarcopenia Y1 - 2021 U6 - https://doi.org/10.3390/cells10112990 SN - 2073-4409 VL - 10 IS - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Silva, Bibiana A1 - Oliveira Costa, Ana Carolina A1 - Tchewonpi, Sorel Sagu A1 - Bönick, Josephine A1 - Huschek, Gerd A1 - Gonzaga, Luciano Valdemiro A1 - Fett, Roseane A1 - Baldermann, Susanne A1 - Rawel, Harshadrai Manilal T1 - Comparative quantification and differentiation of bracatinga (Mimosa scabrella Bentham) honeydew honey proteins using targeted peptide markers identified by high-resolution mass spectrometry JF - Food research international N2 - Honey traceability is an important topic, especially for honeydew honeys, due to the increased incidence of adulteration. This study aimed to establish specific markers to quantify proteins in honey. A proteomics strategy to identify marker peptides from bracatinga honeydew honey was therefore developed. The proteomics approach was based on initial untargeted identification of honey proteins and peptides by LC-ESI-Triple-TOF-MS/MS, which identified the major royal jelly proteins (MRJP) presence. Afterwards, the peptides were selected by the in silico digestion. The marker peptides were quantified by the developed targeted LC-QqQ-MS/MS method, which provided good linearity and specificity, besides recoveries between 92 and 100% to quantify peptides from bracatinga honeydew honey. The uniqueness and high response in mass spectrometry were backed by further complementary protein analysis (SDS-PAGE). The selected marker peptides EALPHVPIFDR (MRJP 1), ILGANVK (MRJP 2), TFVTIER (MRJP 3), QNIDVVAR (MRJP 4), FINNDYNFNEVNFR (MRJP 5) and LLQPYPDWSWTK (MRJP 7), quantified by LC-QqQ-MS/MS, highlighted that the content of QNIDVVAR from MRJP 4 could be used to differentiate bracatinga honeydew honey from floral honeys (p < 0.05) as a potential marker for its authentication. Finally, principal components analysis highlighted the QNIDVVAR content as a good descriptor of the analyzed bracatinga honeydew honey samples. KW - Honeydew honey KW - Major royal jelly proteins KW - Marker peptides KW - High-resolution mass spectrometry KW - Principal component analysis Y1 - 2020 U6 - https://doi.org/10.1016/j.foodres.2020.109991 SN - 0963-9969 SN - 1873-7145 VL - 141 PB - Elsevier CY - New York, NY [u.a.] ER - TY - JOUR A1 - Beckmann, Nadine A1 - Schumacher, Fabian A1 - Kleuser, Burkhard A1 - Gulbins, Erich A1 - Nomellini, Vanessa A1 - Caldwell, Charles C. T1 - Burn injury impairs neutrophil chemotaxis through increased ceramide JF - Shock : injury, inflammation, and sepsis, laboratory and clinical approaches N2 - Infection is a common and often deadly complication after burn injury. A major underlying factor is burn-induced immune dysfunction, particularly with respect to neutrophils as the primary responders to infection. Temporally after murine scald injury, we demonstrate impaired bone marrow neutrophil chemotaxis toward CXCL1 ex vivo. Additionally, we observed a reduced recruitment of neutrophils to the peritoneal after elicitation 7 days after injury. We demonstrate that neutrophil ceramide levels increase after burn injury, and this is associated with decreased expression of CXCR2 and blunted chemotaxis. A major signaling event upon CXCR2 activation is Akt phosphorylation and this was reduced when ceramide was elevated. In contrast, PTEN levels were elevated and PTEN-inhibition elevated phospho-Akt levels and mitigated the burn-induced neutrophil chemotaxis defect. Altogether, this study identifies a newly described pathway of ceramide-mediated suppression of neutrophil chemotaxis after burn injury and introduces potential targets to mitigate this defect and reduce infection-related morbidity and mortality after burn. KW - Acid sphingomyelinase KW - Akt KW - burn injury KW - ceramide KW - CXCR2 KW - immune KW - dysfunction KW - neutrophil chemotaxis KW - PTEN Y1 - 2021 U6 - https://doi.org/10.1097/SHK.0000000000001693 SN - 1073-2322 SN - 1540-0514 VL - 56 IS - 1 SP - 125 EP - 132 PB - Lippincott Williams & Wilkins CY - Hagerstown, Md. ER - TY - JOUR A1 - Solovyev, Nikolay A1 - Drobyshev, Evgenii A1 - Blume, Bastian A1 - Michalke, Bernhard T1 - Selenium at the neural barriers BT - a review JF - Frontiers in neuroscience / Frontiers Research Foundation N2 - Selenium (Se) is known to contribute to several vital physiological functions in mammals: antioxidant defense, fertility, thyroid hormone metabolism, and immune response. Growing evidence indicates the crucial role of Se and Se-containing selenoproteins in the brain and brain function. As for the other essential trace elements, dietary Se needs to reach effective concentrations in the central nervous system (CNS) to exert its functions. To do so, Se-species have to cross the blood-brain barrier (BBB) and/or blood-cerebrospinal fluid barrier (BCB) of the choroid plexus. The main interface between the general circulation of the body and the CNS is the BBB. Endothelial cells of brain capillaries forming the so-called tight junctions are the primary anatomic units of the BBB, mainly responsible for barrier function. The current review focuses on Se transport to the brain, primarily including selenoprotein P/low-density lipoprotein receptor-related protein 8 (LRP8, also known as apolipoprotein E receptor-2) dependent pathway, and supplementary transport routes of Se into the brain via low molecular weight Se-species. Additionally, the potential role of Se and selenoproteins in the BBB, BCB, and neurovascular unit (NVU) is discussed. Finally, the perspectives regarding investigating the role of Se and selenoproteins in the gut-brain axis are outlined. KW - selenium KW - selenoprotein P KW - low molecular weight selenium species KW - blood– cerebrospinal fluid barrier KW - blood– brain barrier KW - selenium transport KW - brain-gut axis KW - LRP8 Y1 - 2021 U6 - https://doi.org/10.3389/fnins.2021.630016 SN - 1662-453X VL - 15 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Döll, Stefanie A1 - Djalali Farahani-Kofoet, Roxana A1 - Zrenner, Rita A1 - Henze, Andrea A1 - Witzel, Katja T1 - Tissue-specific signatures of metabolites and proteins in asparagus roots and exudates JF - Horticulture research N2 - Comprehensive untargeted and targeted analysis of root exudate composition has advanced our understanding of rhizosphere processes. However, little is known about exudate spatial distribution and regulation. We studied the specific metabolite signatures of asparagus root exudates, root outer (epidermis and exodermis), and root inner tissues (cortex and vasculature). The greatest differences were found between exudates and root tissues. In total, 263 non-redundant metabolites were identified as significantly differentially abundant between the three root fractions, with the majority being enriched in the root exudate and/or outer tissue and annotated as 'lipids and lipid-like molecules' or 'phenylpropanoids and polyketides'. Spatial distribution was verified for three selected compounds using MALDI-TOF mass spectrometry imaging. Tissue-specific proteome analysis related root tissue-specific metabolite distributions and rhizodeposition with underlying biosynthetic pathways and transport mechanisms. The proteomes of root outer and inner tissues were spatially very distinct, in agreement with the fundamental differences between their functions and structures. According to KEGG pathway analysis, the outer tissue proteome was characterized by a high abundance of proteins related to 'lipid metabolism', 'biosynthesis of other secondary metabolites' and 'transport and catabolism', reflecting its main functions of providing a hydrophobic barrier, secreting secondary metabolites, and mediating water and nutrient uptake. Proteins more abundant in the inner tissue related to 'transcription', 'translation' and 'folding, sorting and degradation', in accord with the high activity of cortical and vasculature cell layers in growth- and development-related processes. In summary, asparagus root fractions accumulate specific metabolites. This expands our knowledge of tissue-specific plant cell function. Y1 - 2021 U6 - https://doi.org/10.1038/s41438-021-00510-5 SN - 2052-7276 SN - 2662-6810 VL - 8 IS - 1 PB - Nanjing Agricultural Univ. CY - Nanjing ER - TY - JOUR A1 - Kuhn, Eugênia Carla A1 - Tavares Jacques, Maurício A1 - Teixeira, Daniela A1 - Meyer, Sören A1 - Gralha, Thiago A1 - Roehrs, Rafael A1 - Camargo, Sandro A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia A1 - Ávila, Daiana Silva T1 - Ecotoxicological assessment of Uruguay River and affluents pre- and biomonitoring JF - Environmental science and pollution research : ESPR N2 - Uruguay River is the most important river in western Rio Grande do Sul, separating Brazil from Argentina and Uruguay. However, its pollution is of great concern due to agricultural activities in the region and the extensive use of pesticides. In a long term, this practice leads to environmental pollution, especially to the aquatic system. The objective of this study was to analyze the physicochemical characteristics, metals and pesticides levels in water samples obtained before and after the planting and pesticides' application season from three sites: Uruguay River and two minor affluents, Mezomo Dam and Salso Stream. For biomonitoring, the free-living nematode Caenorhabditis elegans was used, which were exposed for 24 h. We did not find any significant alteration in physicochemical parameters. In the pre- and post-pesticides' samples we observed a residual presence of three pesticides (tebuconazole, imazethapyr, and clomazone) and metals which levels were above the recommended (As, Hg, Fe, and Mn). Exposure to both pre- and post-pesticides' samples impaired C. elegans reproduction and post-pesticides samples reduced worms' survival rate and lifespan. PCA analysis indicated that the presence of metals and pesticides are important variables that impacted C. elegans biological endpoints. Our data demonstrates that Uruguay River and two affluents are contaminated independent whether before or after pesticides' application season. In addition, it reinforces the usefulness of biological indicators, since simple physicochemical analyses are not sufficient to attest water quality and ecological safety. KW - Heavy metals KW - Pesticides KW - Contamination KW - Arsenic KW - Environmental KW - pollution KW - Uruguay River Y1 - 2021 U6 - https://doi.org/10.1007/s11356-020-11986-4 SN - 0944-1344 SN - 1614-7499 VL - 28 IS - 17 SP - 21730 EP - 21741 PB - Springer CY - Berlin ; Heidelberg ER - TY - JOUR A1 - Pan, Yuanwei A1 - Ma, Xuehua A1 - Liu, Chuang A1 - Xing, Jie A1 - Zhou, Suqiong A1 - Parshad, Badri A1 - Schwerdtle, Tanja A1 - Li, Wenzhong A1 - Wu, Aiguo A1 - Haag, Rainer T1 - Retinoic acid-loaded dendritic polyglycerol-conjugated gold nanostars for targeted photothermal therapy in breast cancer stem cells JF - ACS nano N2 - The existence of cancer stem cells (CSCs) poses a major obstacle for the success of current cancer therapies, especially the fact that non-CSCs can spontaneously turn into CSCs, which lead to the failure of the treatment and tumor relapse. Therefore, it is very important to develop effective strategies for the eradication of the CSCs. In this work, we have developed a CSCs-specific targeted, retinoic acid (RA)-loaded gold nanostars-dendritic polyglycerol (GNSs-dPG) nanoplatform for the efficient eradication of CSCs. The nanocomposites possess good biocompatibility and exhibit effective CSCs-specific multivalent targeted capability due to hyaluronic acid (HA) decorated on the multiple attachment sites of the bioinert dendritic polyglycerol (dPG). With the help of CSCs differentiation induced by RA, the self-renewal of breast CSCs and tumor growth were suppressed by the high therapeutic efficacy of photothermal therapy (PTT) in a synergistic inhibitory manner. Moreover, the stemness gene expression and CSC-driven tumorsphere formation were significantly diminished. In addition, the in vivo tumor growth and CSCs were also effectively eliminated, which indicated superior anticancer activity, effective CSCs suppression, and prevention of relapse. Taken together, we developed a CSCs-specific targeted, RA-loaded GNSs-dPG nanoplatform for the targeted eradication of CSCs and for preventing the relapse. KW - cancer stem cells KW - dendritic polyglycerol KW - gold nanostars KW - retinoic acid KW - photothermal therapy Y1 - 2021 U6 - https://doi.org/10.1021/acsnano.1c05452 SN - 1936-0851 SN - 1936-086X VL - 15 IS - 9 SP - 15069 EP - 15084 PB - American Chemical Society CY - Washington ER - TY - CHAP A1 - Michaelis, Vivien A1 - Aengenheister, Leonie A1 - Schwerdtle, Tanja A1 - Buerki-Thurnherr, Tina A1 - Bornhorst, Julia T1 - Manganese translocation across an in vitro model of human villous trophoblast T2 - Placenta Y1 - 2021 U6 - https://doi.org/10.1016/j.placenta.2021.07.205 SN - 0143-4004 SN - 1532-3102 VL - 112 SP - E63 EP - E64 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Jannasch, Franziska A1 - Nickel, Daniela A1 - Schulze, Matthias Bernd T1 - The reliability and relative validity of predefined dietary patterns were higher than that of exploratory dietary patterns in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam population JF - British journal of nutrition : BJN : an international journal of nutritional science / published on behalf of The Nutrition Society N2 - The aim of this study was to assess the ability of the FFQ to describe reliable and valid dietary pattern (DP) scores. In a total of 134 participants of the European Prospective Investigation into Cancer and Nutrition-Potsdam study aged 35-67 years, the FFQ was applied twice (baseline and after 1 year) to assess its reliability. Between November 1995 and March 1997, twelve 24-h dietary recalls (24HDR) as reference instrument were applied to assess the validity of the FFQ. Exploratory DP were derived by principal component analyses. Investigated predefined DP were the Alternative Healthy Eating Index (AHEI) and two Mediterranean diet indices. From dietary data of each FFQ, two exploratory DP were retained, but differed in highly loading food groups, resulting in moderate correlations (r 0 center dot 45-0 center dot 58). The predefined indices showed higher correlations between the FFQ (r(AHEI) 0 center dot 62, r(Mediterranean Diet Pyramid Index (MedPyr)) 0 center dot 62 and r(traditional Mediterranean Diet Score (tMDS)) 0 center dot 51). From 24HDR dietary data, one exploratory DP retained differed in composition to the first FFQ-based DP, but showed similarities to the second DP, reflected by a good correlation (r 0 center dot 70). The predefined DP correlated moderately (r 0 center dot 40-0 center dot 60). To conclude, long-term analyses on exploratory DP should be interpreted with caution, due to only moderate reliability. The validity differed extensively for the two exploratory DP. The investigated predefined DP showed a better reliability and a moderate validity, comparable to other studies. Within the two Mediterranean diet indices, the MedPyr performed better than the tMDs in this middle-aged, semi-urban German study population. KW - dietary patterns KW - reliability KW - validity Y1 - 2020 U6 - https://doi.org/10.1017/S0007114520003517 SN - 1475-2662 SN - 0007-1145 VL - 125 IS - 11 SP - 1270 EP - 1280 PB - Cambridge University Press CY - Cambridge ER - TY - JOUR A1 - Fitzner, Maria A1 - Fricke, Anna A1 - Schreiner, Monika A1 - Baldermann, Susanne T1 - Utilization of regional natural brines for the indoor cultivation of Salicornia europaea JF - Sustainability / Multidisciplinary Digital Publishing Institute (MDPI) N2 - Scaling agriculture to the globally rising population demands new approaches for future crop production such as multilayer and multitrophic indoor farming. Moreover, there is a current trend towards sustainable local solutions for aquaculture and saline agriculture. In this context, halophytes are becoming increasingly important for research and the food industry. As Salicornia europaea is a highly salt-tolerant obligate halophyte that can be used as a food crop, indoor cultivation with saline water is of particular interest. Therefore, finding a sustainable alternative to the use of seawater in non-coastal regions is crucial. Our goal was to determine whether natural brines, which are widely distributed and often available in inland areas, provide an alternative water source for the cultivation of saline organisms. This case study investigated the potential use of natural brines for the production of S. europaea. In the control group, which reflects the optimal growth conditions, fresh weight was increased, but there was no significant difference between the treatment groups comparing natural brines with artificial sea water. A similar pattern was observed for carotenoids and chlorophylls. Individual components showed significant differences. However, within treatments, there were mostly no changes. In summary, we showed that the influence of the different chloride concentrations was higher than the salt composition. Moreover, nutrient-enriched natural brine was demonstrated to be a suitable alternative for cultivation of S. europaea in terms of yield and nutritional quality. Thus, the present study provides the first evidence for the future potential of natural brine waters for the further development of aquaculture systems and saline agriculture in inland regions. KW - carotenoids KW - glasswort KW - land-based aquaculture KW - seawater KW - phytochemicals KW - halophytes KW - salt composition KW - chlorophylls KW - artificial KW - salt KW - saline agriculture Y1 - 2021 U6 - https://doi.org/10.3390/su132112105 SN - 2071-1050 VL - 13 IS - 21 PB - MDPI CY - Basel ER - TY - JOUR A1 - Wigger, Dominik A1 - Schumacher, Fabian A1 - Schneider-Schaulies, Sibylle A1 - Kleuser, Burkhard T1 - Sphingosine 1-phosphate metabolism and insulin signaling JF - Cellular signalling N2 - Insulin is the main anabolic hormone secreted by 13-cells of the pancreas stimulating the assimilation and storage of glucose in muscle and fat cells. It modulates the postprandial balance of carbohydrates, lipids and proteins via enhancing lipogenesis, glycogen and protein synthesis and suppressing glucose generation and its release from the liver. Resistance to insulin is a severe metabolic disorder related to a diminished response of peripheral tissues to the insulin action and signaling. This leads to a disturbed glucose homeostasis that precedes the onset of type 2 diabetes (T2D), a disease reaching epidemic proportions. A large number of studies reported an association between elevated circulating fatty acids and the development of insulin resistance. The increased fatty acid lipid flux results in the accumulation of lipid droplets in a variety of tissues. However, lipid intermediates such as diacylglycerols and ceramides are also formed in response to elevated fatty acid levels. These bioactive lipids have been associated with the pathogenesis of insulin resistance. More recently, sphingosine 1-phosphate (S1P), another bioactive sphingolipid derivative, has also been shown to increase in T2D and obesity. Although many studies propose a protective role of S1P metabolism on insulin signaling in peripheral tissues, other studies suggest a causal role of S1P on insulin resistance. In this review, we critically summarize the current state of knowledge of S1P metabolism and its modulating role on insulin resistance. A particular emphasis is placed on S1P and insulin signaling in hepatocytes, skeletal muscle cells, adipocytes and pancreatic 13-cells. In particular, modulation of receptors and enzymes that regulate S1P metabolism can be considered as a new therapeutic option for the treatment of insulin resistance and T2D. KW - Insulin resistance KW - Type 2 diabetes KW - Sphingolipids KW - Hepatocytes KW - Adipocytes KW - Skeletal muscle cells Y1 - 2021 U6 - https://doi.org/10.1016/j.cellsig.2021.109959 SN - 0898-6568 SN - 1873-3913 VL - 82 PB - Elsevier Science CY - Amsterdam [u.a.] ER - TY - GEN A1 - Baesler, Jessica A1 - Michaelis, Vivien A1 - Stiboller, Michael A1 - Haase, Hajo A1 - Aschner, Michael A1 - Schwerdtle, Tanja A1 - Sturzenbaum, Stephen R. A1 - Bornhorst, Julia T1 - Nutritive manganese and zinc overdosing in aging c. elegans result in a metallothionein-mediated alteration in metal homeostasis T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Manganese (Mn) and zinc (Zn) are not only essential trace elements, but also potential exogenous risk factors for various diseases. Since the disturbed homeostasis of single metals can result in detrimental health effects, concerns have emerged regarding the consequences of excessive exposures to multiple metals, either via nutritional supplementation or parenteral nutrition. This study focuses on Mn-Zn-interactions in the nematode Caenorhabditis elegans (C. elegans) model, taking into account aspects related to aging and age-dependent neurodegeneration. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1364 KW - aging KW - C. elegans KW - homeostasis KW - manganese KW - zinc Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-514995 SN - 1866-8372 IS - 8 ER - TY - GEN A1 - Perez-Cornago, Aurora A1 - Crowe, Francesca L. A1 - Appleby, Paul N. A1 - Bradbury, Kathryn E. A1 - Wood, Angela M. A1 - Jakobsen, Marianne Uhre A1 - Johnson, Laura A1 - Sacerdote, Carlotta A1 - Steur, Marinka A1 - Weiderpass, Elisabete A1 - Wurtz, Anne Mette L. A1 - Kuhn, Tilman A1 - Katzke, Verena A1 - Trichopoulou, Antonia A1 - Karakatsani, Anna A1 - La Vecchia, Carlo A1 - Masala, Giovanna A1 - Tumino, Rosario A1 - Panico, Salvatore A1 - Sluijs, Ivonne A1 - Skeie, Guri A1 - Imaz, Liher A1 - Petrova, Dafina A1 - Quiros, J. Ramon A1 - Yohar, Sandra Milena Colorado A1 - Jakszyn, Paula A1 - Melander, Olle A1 - Sonestedt, Emily A1 - Andersson, Jonas A1 - Wennberg, Maria A1 - Aune, Dagfinn A1 - Riboli, Elio A1 - Schulze, Matthias Bernd A1 - di Angelantonio, Emanuele A1 - Wareham, Nicholas J. A1 - Danesh, John A1 - Forouhi, Nita G. A1 - Butterworth, Adam S. A1 - Key, Timothy J. T1 - Plant foods, dietary fibre and risk of ischaemic heart disease in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background: Epidemiological evidence indicates that diets rich in plant foods are associated with a lower risk of ischaemic heart disease (IHD), but there is sparse information on fruit and vegetable subtypes and sources of dietary fibre. This study examined the associations of major plant foods, their subtypes and dietary fibre with risk of IHD in the European Prospective Investigation into Cancer and Nutrition (EPIC). Methods: We conducted a prospective analysis of 490 311 men and women without a history of myocardial infarction or stroke at recruitment (12.6 years of follow-up, n cases = 8504), in 10 European countries. Dietary intake was assessed using validated questionnaires, calibrated with 24-h recalls. Multivariable Cox regressions were used to estimate hazard ratios (HR) of IHD. Results: There was a lower risk of IHD with a higher intake of fruit and vegetables combined [HR per 200 g/day higher intake 0.94, 95% confidence interval (CI): 0.90-0.99, P-trend = 0.009], and with total fruits (per 100 g/day 0.97, 0.95-1.00, P-trend = 0.021). There was no evidence for a reduced risk for fruit subtypes, except for bananas. Risk was lower with higher intakes of nuts and seeds (per 10 g/day 0.90, 0.82-0.98, Ptrend = 0.020), total fibre (per 10 g/day 0.91, 0.85-0.98, P-trend = 0.015), fruit and vegetable fibre (per 4 g/day 0.95, 0.91-0.99, P-trend = 0.022) and fruit fibre (per 2 g/day 0.97, 0.95-1.00, P-trend = 0.045). No associations were observed between vegetables, vegetables subtypes, legumes, cereals and IHD risk. Conclusions: In this large prospective study, we found some small inverse associations between plant foods and IHD risk, with fruit and vegetables combined being the most strongly inversely associated with risk. Whether these small associations are causal remains unclear. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1367 KW - fruit KW - vegetables KW - legumes KW - nuts KW - seeds KW - coronary heart disease Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-560340 SN - 1866-8372 IS - 1 ER - TY - GEN A1 - Naser, Eyad A1 - Kadow, Stephanie A1 - Schumacher, Fabian A1 - Mohamed, Zainelabdeen H. A1 - Kappe, Christian A1 - Hessler, Gabriele A1 - Pollmeier, Barbara A1 - Kleuser, Burkhard A1 - Arenz, Christoph A1 - Becker, Katrin Anne A1 - Gulbins, Erich A1 - Carpinteiro, Alexander T1 - Characterization of the small molecule ARC39 BT - a direct and specific inhibitor of acid sphingomyelinase in vitro[S] T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Inhibition of acid sphingomyelinase (ASM), a lysosomal enzyme that catalyzes the hydrolysis of sphingomyelin into ceramide and phosphorylcholine, may serve as an investigational tool or a therapeutic intervention to control many diseases. Specific ASM inhibitors are currently not sufficiently characterized. Here, we found that 1-aminodecylidene bis-phosphonic acid (ARC39) specifically and efficiently (>90%) inhibits both lysosomal and secretory ASM in vitro. Results from investigating sphingomyelin phosphodiesterase 1 (SMPD1/Smpd1) mRNA and ASM protein levels suggested that ARC39 directly inhibits ASM's catalytic activity in cultured cells, a mechanism that differs from that of functional inhibitors of ASM. We further provide evidence that ARC39 dose- and time-dependently inhibits lysosomal ASM in intact cells, and we show that ARC39 also reduces platelet- and ASM-promoted adhesion of tumor cells. The observed toxicity of ARC39 is low at concentrations relevant for ASM inhibition in vitro, and it does not strongly alter the lysosomal compartment or induce phospholipidosis in vitro. When applied intraperitoneally in vivo, even subtoxic high doses administered short-term induced sphingomyelin accumulation only locally in the peritoneal lavage without significant accumulation in plasma, liver, spleen, or brain. These findings require further investigation with other possible chemical modifications. In conclusion, our results indicate that ARC39 potently and selectively inhibits ASM in vitro and highlight the need for developing compounds that can reach tissue concentrations sufficient for ASM inhibition in vivo. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1407 KW - sphingolipids KW - sphingomyelin KW - cerami-des KW - lipid metabolism KW - enzymology KW - lysosome KW - lysosomal hydrolases KW - acid ceramidase KW - bisphosphonates KW - functional inhibitors of acid sphin-gomyelinase KW - 1-aminodecylidene bis-phosphonic acid Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-516635 SN - 1866-8372 IS - 6 ER - TY - JOUR A1 - Naser, Eyad A1 - Kadow, Stephanie A1 - Schumacher, Fabian A1 - Mohamed, Zainelabdeen H. A1 - Kappe, Christian A1 - Hessler, Gabriele A1 - Pollmeier, Barbara A1 - Kleuser, Burkhard A1 - Arenz, Christoph A1 - Becker, Katrin Anne A1 - Gulbins, Erich A1 - Carpinteiro, Alexander T1 - Characterization of the small molecule ARC39 BT - a direct and specific inhibitor of acid sphingomyelinase in vitro[S] JF - Journal of Lipid Research N2 - Inhibition of acid sphingomyelinase (ASM), a lysosomal enzyme that catalyzes the hydrolysis of sphingomyelin into ceramide and phosphorylcholine, may serve as an investigational tool or a therapeutic intervention to control many diseases. Specific ASM inhibitors are currently not sufficiently characterized. Here, we found that 1-aminodecylidene bis-phosphonic acid (ARC39) specifically and efficiently (>90%) inhibits both lysosomal and secretory ASM in vitro. Results from investigating sphingomyelin phosphodiesterase 1 (SMPD1/Smpd1) mRNA and ASM protein levels suggested that ARC39 directly inhibits ASM's catalytic activity in cultured cells, a mechanism that differs from that of functional inhibitors of ASM. We further provide evidence that ARC39 dose- and time-dependently inhibits lysosomal ASM in intact cells, and we show that ARC39 also reduces platelet- and ASM-promoted adhesion of tumor cells. The observed toxicity of ARC39 is low at concentrations relevant for ASM inhibition in vitro, and it does not strongly alter the lysosomal compartment or induce phospholipidosis in vitro. When applied intraperitoneally in vivo, even subtoxic high doses administered short-term induced sphingomyelin accumulation only locally in the peritoneal lavage without significant accumulation in plasma, liver, spleen, or brain. These findings require further investigation with other possible chemical modifications. In conclusion, our results indicate that ARC39 potently and selectively inhibits ASM in vitro and highlight the need for developing compounds that can reach tissue concentrations sufficient for ASM inhibition in vivo. KW - sphingolipids KW - sphingomyelin KW - cerami-des KW - lipid metabolism KW - enzymology KW - lysosome KW - lysosomal hydrolases KW - acid ceramidase KW - bisphosphonates KW - functional inhibitors of acid sphin-gomyelinase KW - 1-aminodecylidene bis-phosphonic acid Y1 - 2021 U6 - https://doi.org/10.1194/jlr.RA120000682 SN - 1539-7262 SN - 0022-2275 VL - 61 IS - 6 SP - 896 EP - 910 PB - American Society for Biochemistry and Molecular Biology CY - Bethesda ER - TY - JOUR A1 - Fink, Julian A1 - Schumacher, Fabian A1 - Schlegel, Jan A1 - Stenzel, Philipp A1 - Wigger, Dominik A1 - Sauer, Markus A1 - Kleuser, Burkhard A1 - Seibel, Jürgen T1 - Azidosphinganine enables metabolic labeling and detection of sphingolipid de novo synthesis JF - Organic & biomolecular chemistry : an international journal of synthetic, physical and biomolecular organic chemistry N2 - Here were report the combination of biocompatible click chemistry of omega-azidosphinganine with fluorescence microscopy and mass spectrometry as a powerful tool to elaborate the sphingolipid metabolism. The azide probe was efficiently synthesized over 13 steps starting from l-serine in an overall yield of 20% and was used for live-cell fluorescence imaging of the endoplasmic reticulum in living cells by bioorthogonal click reaction with a DBCO-labeled fluorophore revealing that the incorporated analogue is mainly localized in the endoplasmic membrane like the endogenous species. A LC-MS(/MS)-based microsomal in vitro assay confirmed that omega-azidosphinganine mimics the natural species enabling the identification and analysis of metabolic breakdown products of sphinganine as a key starting intermediate in the complex sphingolipid biosynthetic pathways. Furthermore, the sphinganine-fluorophore conjugate after click reaction was enzymatically tolerated to form its dihydroceramide and ceramide metabolites. Thus, omega-azidosphinganine represents a useful biofunctional tool for metabolic investigations both by in vivo fluorescence imaging of the sphingolipid subcellular localization in the ER and by in vitro high-resolution mass spectrometry analysis. This should reveal novel insights of the molecular mechanisms sphingolipids and their processing enzymes have e.g. in infection. Y1 - 2021 U6 - https://doi.org/10.1039/d0ob02592e SN - 1477-0520 SN - 1477-0539 VL - 19 IS - 10 SP - 2203 EP - 2212 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Klaus, Susanne A1 - Igual Gil, Carla A1 - Ost, Mario T1 - Regulation of diurnal energy balance by mitokines JF - Cellular and molecular life sciences : CMLS N2 - The mammalian system of energy balance regulation is intrinsically rhythmic with diurnal oscillations of behavioral and metabolic traits according to the 24 h day/night cycle, driven by cellular circadian clocks and synchronized by environmental or internal cues such as metabolites and hormones associated with feeding rhythms. Mitochondria are crucial organelles for cellular energy generation and their biology is largely under the control of the circadian system. Whether mitochondrial status might also feed-back on the circadian system, possibly via mitokines that are induced by mitochondrial stress as endocrine-acting molecules, remains poorly understood. Here, we describe our current understanding of the diurnal regulation of systemic energy balance, with focus on fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15), two well-known endocrine-acting metabolic mediators. FGF21 shows a diurnal oscillation and directly affects the output of the brain master clock. Moreover, recent data demonstrated that mitochondrial stress-induced GDF15 promotes a day-time restricted anorexia and systemic metabolic remodeling as shown in UCP1-transgenic mice, where both FGF21 and GDF15 are induced as myomitokines. In this mouse model of slightly uncoupled skeletal muscle mitochondria GDF15 proved responsible for an increased metabolic flexibility and a number of beneficial metabolic adaptations. However, the molecular mechanisms underlying energy balance regulation by mitokines are just starting to emerge, and more data on diurnal patterns in mouse and man are required. This will open new perspectives into the diurnal nature of mitokines and action both in health and disease. KW - Mitochondria KW - FGF21 KW - GDF15 KW - Circadian rhythm KW - Hormones KW - Nutrition Y1 - 2021 U6 - https://doi.org/10.1007/s00018-020-03748-9 SN - 1420-682X SN - 1420-9071 VL - 78 IS - 7 SP - 3369 EP - 3384 PB - Springer International Publishing AG CY - Cham (ZG) ER - TY - JOUR A1 - Burkhardt, Wiebke A1 - Rausch, Theresa A1 - Klopfleisch, Robert A1 - Blaut, Michael A1 - Braune, Annett T1 - Impact of dietary sulfolipid-derived sulfoquinovose on gut microbiota composition and inflammatory status of colitis-prone interleukin-10-deficient mice JF - International journal of medical microbiology : IJMM N2 - The interplay between diet, intestinal microbiota and host is a major factor impacting health. A diet rich in unsaturated fatty acids has been reported to stimulate the growth of Bilophila wadsworthia by increasing the proportion of the sulfonated bile acid taurocholate (TC). The taurine-induced overgrowth of B. wadsworthia promoted the development of colitis in interleukin-10-deficient (IL-10(-/-)) mice. This study aimed to investigate whether intake of the sulfonates sulfoquinovosyl diacylglycerols (SQDG) with a dietary supplement or their degradation product sulfoquinovose (SQ), stimulate the growth of B. wadsworthia in a similar manner and, thereby, cause intestinal inflammation. Conventional IL-10(-/-) mice were fed a diet supplemented with the SQDG-rich cyanobacterium Arthrospira platensis (Spirulina). SQ or TC were orally applied to conventional IL-10(-/-) mice and gnotobiotic IL-10(-/-) mice harboring a simplified human intestinal microbiota with or without B. wadsworthia. Analyses of inflammatory parameters revealed that none of the sulfonates induced severe colitis, but both, Spirulina and TC, induced expression of pro-inflammatory cytokines in cecal mucosa. Cell numbers of B. wadsworthia decreased almost two orders of magnitude by Spirulina feeding but slightly increased in gnotobiotic SQ and conventional TC mice. Changes in microbiota composition were observed in feces as a result of Spirulina or TC feeding in conventional mice. In conclusion, the dietary sulfonates SQDG and their metabolite SQ did not elicit bacteria-induced intestinal inflammation in IL-10(-/-) mice and, thus, do not promote colitis. KW - Sulfonate KW - Sulfoquinovose KW - Spirulina KW - Inflammatory bowel disease KW - Bilophila wadsworthia KW - Taurocholate Y1 - 2021 U6 - https://doi.org/10.1016/j.ijmm.2021.151494 SN - 1618-0607 VL - 311 IS - 3 PB - Elsevier CY - München ER - TY - JOUR A1 - Schulze, Matthias Bernd T1 - Dietary linoleic acid: will modifying dietary fat quality reduce the risk of type 2 diabetes? JF - Diabetes care Y1 - 2021 U6 - https://doi.org/10.2337/dci21-0031 SN - 0149-5992 SN - 1935-5548 VL - 44 IS - 9 SP - 1913 EP - 1915 PB - American Diabetes Association CY - Alexandria ER - TY - CHAP A1 - Schenke, Maren A1 - Schjeide, Brit-Maren A1 - Püschel, Gerhard Paul A1 - Seeger, Bettina T1 - Serotype-specific sensitivity to Botulinum neurotoxins of iPSC-derived motor neurons T2 - Naunyn-Schmiedeberg's archives of pharmacology Y1 - 2021 U6 - https://doi.org/10.1007/s00210-021-02066-6 SN - 0028-1298 SN - 1432-1912 VL - 394 IS - Suppl. 1 SP - S4 EP - S4 PB - Springer CY - Berlin ; Heidelberg ER - TY - JOUR A1 - Birukov, Anna A1 - Cuadrat, Rafael R. C. A1 - Polemiti, Elli A1 - Eichelmann, Fabian A1 - Schulze, Matthias Bernd T1 - Advanced glycation end-products, measured as skin autofluorescence, associate with vascular stiffness in diabetic, pre-diabetic and normoglycemic individuals BT - a cross-sectional study JF - Cardiovascular diabetology N2 - Background Advanced glycation end-products are proteins that become glycated after contact with sugars and are implicated in endothelial dysfunction and arterial stiffening. We aimed to investigate the relationships between advanced glycation end-products, measured as skin autofluorescence, and vascular stiffness in various glycemic strata. Methods We performed a cross-sectional analysis within the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort, comprising n = 3535 participants (median age 67 years, 60% women). Advanced glycation end-products were measured as skin autofluorescence with AGE-Reader (TM), vascular stiffness was measured as pulse wave velocity, augmentation index and ankle-brachial index with Vascular Explorer (TM). A subset of 1348 participants underwent an oral glucose tolerance test. Participants were sub-phenotyped into normoglycemic, prediabetes and diabetes groups. Associations between skin autofluorescence and various indices of vascular stiffness were assessed by multivariable regression analyses and were adjusted for age, sex, measures of adiposity and lifestyle, blood pressure, prevalent conditions, medication use and blood biomarkers. Results Skin autofluorescence associated with pulse wave velocity, augmentation index and ankle-brachial index, adjusted beta coefficients (95% CI) per unit skin autofluorescence increase: 0.38 (0.21; 0.55) for carotid-femoral pulse wave velocity, 0.25 (0.14; 0.37) for aortic pulse wave velocity, 1.00 (0.29; 1.70) for aortic augmentation index, 4.12 (2.24; 6.00) for brachial augmentation index and - 0.04 (- 0.05; - 0.02) for ankle-brachial index. The associations were strongest in men, younger individuals and were consistent across all glycemic strata: for carotid-femoral pulse wave velocity 0.36 (0.12; 0.60) in normoglycemic, 0.33 (- 0.01; 0.67) in prediabetes and 0.45 (0.09; 0.80) in diabetes groups; with similar estimates for aortic pulse wave velocity. Augmentation index was associated with skin autofluorescence only in normoglycemic and diabetes groups. Ankle-brachial index inversely associated with skin autofluorescence across all sex, age and glycemic strata. Conclusions Our findings indicate that advanced glycation end-products measured as skin autofluorescence might be involved in vascular stiffening independent of age and other cardiometabolic risk factors not only in individuals with diabetes but also in normoglycemic and prediabetic conditions. Skin autofluorescence might prove as a rapid and non-invasive method for assessment of macrovascular disease progression across all glycemic strata. KW - Advanced glycation end-products KW - AGE KW - Ankle-brachial index KW - Augmentation KW - index KW - Prediabetes KW - Glycemia KW - Pulse wave velocity KW - Skin KW - autofluorescence KW - Vascular stiffness Y1 - 2021 U6 - https://doi.org/10.1186/s12933-021-01296-5 SN - 1475-2840 VL - 20 IS - 1 PB - BioMed Central CY - London ER - TY - JOUR A1 - Witt, Barbara A1 - Stiboller, Michael A1 - Raschke, Stefanie A1 - Friese, Sharleen A1 - Ebert, Franziska A1 - Schwerdtle, Tanja T1 - Characterizing effects of excess copper levels in a human astrocytic cell line with focus on oxidative stress markers JF - Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements, GMS N2 - Background: Being an essential trace element, copper is involved in diverse physiological processes. However, excess levels might lead to adverse effects. Disrupted copper homeostasis, particularly in the brain, has been associated with human diseases including the neurodegenerative disorders Wilson and Alzheimer?s disease. In this context, astrocytes play an important role in the regulation of the copper homeostasis in the brain and likely in the prevention against neuronal toxicity, consequently pointing them out as a potential target for the neurotoxicity of copper. Major toxic mechanisms are discussed to be directed against mitochondria probably via oxidative stress. However, the toxic potential and mode of action of copper in astrocytes is poorly understood, so far. Methods: In this study, excess copper levels affecting human astrocytic cell model and their involvement in the neurotoxic mode of action of copper, as well as, effects on the homeostasis of other trace elements (Mn, Fe, Ca and Mg) were investigated. Results: Copper induced substantial cytotoxic effects in the human astrocytic cell line following 48 h incubation (EC30: 250 ?M) and affected mitochondrial function, as observed via reduction of mitochondrial membrane potential and increased ROS production, likely originating from mitochondria. Moreover, cellular GSH metabolism was altered as well. Interestingly, not only cellular copper levels were affected, but also the homeostasis of other elements (Ca, Fe and Mn) were disrupted. Conclusion: One potential toxic mode of action of copper seems to be effects on the mitochondria along with induction of oxidative stress in the human astrocytic cell model. Moreover, excess copper levels seem to interact with the homeostasis of other essential elements such as Ca, Fe and Mn. Disrupted element homeostasis might also contribute to the induction of oxidative stress, likely involved in the onset and progression of neurodegenerative disorders. These insights in the toxic mechanisms will help to develop ideas and approaches for therapeutic strategies against copper-mediated diseases. KW - Copper KW - Astrocytes KW - Toxicity KW - Mitochondria KW - ROS KW - Trace elements Y1 - 2021 U6 - https://doi.org/10.1016/j.jtemb.2021.126711 SN - 1878-3252 VL - 65 PB - Elsevier CY - München ER - TY - JOUR A1 - Schell, Mareike A1 - Wardelmann, Kristina A1 - Kleinridders, Andre T1 - Untangling the effect of insulin action on brain mitochondria and metabolism JF - Journal of neuroendocrinology N2 - The regulation of energy homeostasis is controlled by the brain and, besides requiring high amounts of energy, it relies on functional insulin/insulin-like growth factor (IGF)-1 signalling in the central nervous system. This energy is mainly provided by mitochondria in form of ATP. Thus, there is an intricate interplay between mitochondrial function and insulin/IGF-1 action to enable functional brain signalling and, accordingly, propagate a healthy metabolism. To adapt to different nutritional conditions, the brain is able to sense the current energy status via mitochondrial and insulin signalling-dependent pathways and exerts an appropriate metabolic response. However, regional, cell type and receptor-specific consequences of this interaction occur and are linked to diverse outcomes such as altered nutrient sensing, body weight regulation or even cognitive function. Impairments of this cross-talk can lead to obesity and glucose intolerance and are linked to neurodegenerative diseases, yet they also induce a self-sustainable, dysfunctional 'metabolic triangle' characterised by insulin resistance, mitochondrial dysfunction and inflammation in the brain. The identification of causal factors deteriorating insulin action, mitochondrial function and concomitantly a signature of metabolic stress in the brain is of utter importance to offer novel mechanistic insights into development of the continuously rising prevalence of non-communicable diseases such as type 2 diabetes and neurodegeneration. This review aims to determine the effect of insulin action on brain mitochondrial function and energy metabolism. It precisely outlines the interaction and differences between insulin action, insulin-like growth factor (IGF)-1 signalling and mitochondrial function; distinguishes between causality and association; and reveals its consequences for metabolism and cognition. We hypothesise that an improvement of at least one signalling pathway can overcome the vicious cycle of a self-perpetuating metabolic dysfunction in the brain present in metabolic and neurodegenerative diseases. KW - brain KW - energy homeostasis KW - inflammation KW - insulin signalling KW - metabolism KW - mitochondrial function Y1 - 2021 U6 - https://doi.org/10.1111/jne.12932 SN - 0953-8194 SN - 1365-2826 VL - 33 IS - 4 PB - Wiley CY - Hoboken ER - TY - CHAP A1 - Wandt, Viktoria Klara Veronika A1 - Winkelbeiner, Nicola A1 - Loßow, Kristina A1 - Kopp, Johannes A1 - Simon, Luise A1 - Ebert, Franziska A1 - Kipp, Anna Patricia A1 - Schwerdtle, Tanja T1 - Trace elements, ageing, and sex. Impact on genome stability BT - Abstracts of the 87th Annual Meeting of the German Society for Experimental and Clinical Pharmacology and Toxicology (DGPT) with contribution of the Arbeitsgemeinschaft für Angewandte Humanpharmakologie e. V. (AGAH) T2 - Naunyn-Schmiedeberg's archives of pharmacology Y1 - 2021 U6 - https://doi.org/10.1007/s00210-021-02066-6 SN - 0028-1298 SN - 1432-1912 VL - 394 IS - Suppl. 1 SP - S13 EP - S13 PB - Springer CY - Berlin ; Heidelberg ER - TY - JOUR A1 - Hackethal, Christin A1 - Kopp, Johannes Florian A1 - Sarvan, Irmela A1 - Schwerdtle, Tanja A1 - Lindtner, Oliver T1 - Total arsenic and water-soluble arsenic species in foods of the first German total diet study (BfR MEAL Study) JF - Food chemistry N2 - Arsenic can occur in foods as inorganic and organic forms. Inorganic arsenic is more toxic than most watersoluble organic arsenic compounds such as arsenobetaine, which is presumed to be harmless for humans. Within the first German total diet study, total arsenic, inorganic arsenic, arsenobetaine, dimethylarsinic acid and monomethylarsonic acid were analyzed in various foods. Highest levels of total arsenic were found in fish, fish products and seafood (mean: 1.43 mg kg(-1); n = 39; min-max: 0.01-6.15 mg kg(-1)), with arsenobetaine confirmed as the predominant arsenic species (1.233 mg kg 1; n = 39; min-max: 0.01-6.23 mg kg (1)). In contrast, inorganic arsenic was determined as prevalent arsenic species in terrestrial foods (0.02 mg kg (1); n = 38; min-max: 0-0.11 mg kg (1)). However, the toxicity of arsenic species varies and measurements are necessary to gain information about the composition and changes of arsenic species in foods due to household processing of foods. KW - Occurrence data KW - Food KW - Total arsenic KW - Arsenic speciation KW - Inductively KW - coupled plasma mass spectrometry Y1 - 2021 U6 - https://doi.org/10.1016/j.foodchem.2020.128913 SN - 0308-8146 SN - 1873-7072 VL - 346 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Gohlke, Sabrina A1 - Mancini, Carola A1 - Garcia-Carrizo, Francisco A1 - Schulz, Tim J. T1 - Loss of the ciliary gene Bbs4 results in defective thermogenesis due to metabolic inefficiency and impaired lipid metabolism JF - The FASEB journal : the official journal of the Federation of American Societies for Experimental Biology N2 - Adipose tissue is central to the regulation of energy balance. While white adipose tissue (WAT) is responsible for triglyceride storage, brown adipose tissue specializes in energy expenditure. Deterioration of brown adipocyte function contributes to the development of metabolic complications like obesity and diabetes. These disorders are also leading symptoms of the Bardet-Biedl syndrome (BBS), a hereditary disorder in humans which is caused by dysfunctions of the primary cilium and which therefore belongs to the group of ciliopathies. The cilium is a hair-like organelle involved in cellular signal transduction. The BBSome, a supercomplex of several Bbs gene products, localizes to the basal body of cilia and is thought to be involved in protein sorting to and from the ciliary membrane. The effects of a functional BBSome on energy metabolism and lipid mobilization in brown and white adipocytes were tested in whole-body Bbs4 knockout mice that were subjected to metabolic challenges. Chronic cold exposure reveals cold-intolerance of knockout mice but also ameliorates the markers of metabolic pathology detected in knockouts prior to cold. Hepatic triglyceride content is markedly reduced in knockout mice while circulating lipids are elevated, altogether suggesting that defective lipid metabolism in adipose tissue creates increased demand for systemic lipid mobilization to meet energetic demands of reduced body temperatures. These findings taken together suggest that Bbs4 is essential for the regulation of adipose tissue lipid metabolism, representing a potential target to treat metabolic disorders. KW - adipose tissue KW - Bbs4 KW - BBsome KW - browning KW - cilium KW - lipid metabolism Y1 - 2021 U6 - https://doi.org/10.1096/fj.202100772RR SN - 1530-6860 VL - 35 IS - 11 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Weitkunat, Karolin A1 - Bishop, Christopher Allen A1 - Wittmüss, Maria A1 - Machate, Tina A1 - Schifelbein, Tina A1 - Schulze, Matthias Bernd A1 - Klaus, Susanne T1 - Effect of microbial status on hepatic odd-chain fatty acids is diet-dependent JF - Nutrients / Molecular Diversity Preservation International (MDPI) N2 - Odd-chain fatty acids (OCFA) are inversely associated with type-2-diabetes in epidemiological studies. They are considered as a biomarker for dairy intake because fermentation in ruminants yields high amounts of propionate, which is used as the primer for lipogenesis. Recently, we demonstrated endogenous OCFA synthesis from propionate in humans and mice, but how this is affected by microbial colonization is still unexplored. Here, we investigated the effect of increasing microbiota complexity on hepatic lipid metabolism and OCFA levels in different dietary settings. Germ-free (GF), gnotobiotic (SIH, simplified human microbiota) or conventional (CONV) C3H/HeOuJ-mice were fed a CHOW or high-fat diet with inulin (HFI) to induce microbial fermentation. We found that hepatic lipogenesis was increased with increasing microbiota complexity, independently of diet. In contrast, OCFA formation was affected by diet as well as microbiota. On CHOW, hepatic OCFA and intestinal gluconeogenesis decreased with increasing microbiota complexity (GF > SIH > CONV), while cecal propionate showed a negative correlation with hepatic OCFA. On HFI, OCFA levels were highest in SIH and positively correlated with cecal propionate. The propionate content in the CHOW diet was 10 times higher than that of HFI. We conclude that bacterial propionate production affects hepatic OCFA formation, unless this effect is masked by dietary propionate intake. KW - pentadecanoic acid (C15:0) KW - heptadecanoic acid (C17:0) KW - type-2-diabetes KW - fatty acid synthesis KW - acetate KW - propionate KW - probiotics KW - gut microbiota KW - prebiotics KW - inulin Y1 - 2021 U6 - https://doi.org/10.3390/nu13051546 SN - 2072-6643 VL - 13 IS - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Wetzel, Alexandra Nicole A1 - Scholtka, Bettina A1 - Schumacher, Fabian A1 - Rawel, Harshadrai Manilal A1 - Geisendörfer, Birte A1 - Kleuser, Burkhard T1 - Epigenetic DNA methylation of EBI3 modulates human interleukin-35 formation via NFkB signaling BT - a promising therapeutic option in ulcerative colitis JF - International journal of molecular sciences N2 - Ulcerative colitis (UC), a severe chronic disease with unclear etiology that is associated with increased risk for colorectal cancer, is accompanied by dysregulation of cytokines. Epstein-Barr virus-induced gene 3 (EBI3) encodes a subunit in the unique heterodimeric IL-12 cytokine family of either pro- or anti-inflammatory function. After having recently demonstrated that upregulation of EBI3 by histone acetylation alleviates disease symptoms in a dextran sulfate sodium (DSS)-treated mouse model of chronic colitis, we now aimed to examine a possible further epigenetic regulation of EBI3 by DNA methylation under inflammatory conditions. Treatment with the DNA methyltransferase inhibitor (DNMTi) decitabine (DAC) and TNF alpha led to synergistic upregulation of EBI3 in human colon epithelial cells (HCEC). Use of different signaling pathway inhibitors indicated NF kappa B signaling was necessary and proportional to the synergistic EBI3 induction. MALDI-TOF/MS and HPLC-ESIMS/MS analysis of DAC/TNF alpha-treated HCEC identified IL-12p35 as the most probable binding partner to form a functional protein. EBI3/IL-12p35 heterodimers (IL-35) induce their own gene upregulation, something that was indeed observed in HCEC cultured with media from previously DAC/TNF alpha-treated HCEC. These results suggest that under inflammatory and demethylating conditions the upregulation of EBI3 results in the formation of anti-inflammatory IL-35, which might be considered as a therapeutic target in colitis. KW - decitabine KW - DNMT inhibitor KW - EBI3 KW - inhibitory cytokines KW - interleukin-35 KW - TNF alpha KW - Ulcerative colitis Y1 - 2021 U6 - https://doi.org/10.3390/ijms22105329 SN - 1422-0067 VL - 22 IS - 10 PB - MDPI CY - Basel ER - TY - JOUR A1 - Reichetzeder, Christoph T1 - Overweight and obesity in pregnancy BT - their impact on epigenetics JF - European journal of clinical nutrition N2 - Over the last few decades, the prevalence of obesity has risen to epidemic proportions worldwide. Consequently, the number of obesity in pregnancy has risen drastically. Gestational overweight and obesity are associated with impaired outcomes for mother and child. Furthermore, studies show that maternal obesity can lead to long-term consequences in the offspring, increasing the risk for obesity and cardiometabolic disease in later life. In addition to genetic mechanisms, mounting evidence demonstrates the induction of epigenetic alterations by maternal obesity, which can affect the offspring's phenotype, thereby influencing the later risk of obesity and cardiometabolic disease. Clear evidence in this regard comes from various animal models of maternal obesity. Evidence derived from clinical studies remains limited. The current article gives an overview of pathophysiological changes associated with maternal obesity and their consequences on placental structure and function. Furthermore, a short excurse is given on epigenetic mechanisms and emerging data regarding a putative interaction between metabolism and epigenetics. Finally, a summary of important findings of animal and clinical studies investigating maternal obesity-related epigenetic effects is presented also addressing current limitations of clinical studies. Y1 - 2021 U6 - https://doi.org/10.1038/s41430-021-00905-6 SN - 0954-3007 SN - 1476-5640 VL - 75 IS - 12 SP - 1710 EP - 1722 PB - Springer Nature CY - London ER - TY - THES A1 - Vogel, Heike T1 - Genetics of obesity and type 2 diabetes N2 - By using mouse outcross populations in combination with bioinformatic approaches, it was possible to identify and characterize novel genes regulating body weight, fat mass and β-cell function, which all contribute to the pathogenesis of obesity and T2D. In detail, the presented studies identified 1. Ifi202b/IFI16 as adipogenic gene involved in adipocyte commitment, maintenance of white adipocyte identity, fat cell size and the inflammatory state of adipose tissue. 2. Pla2g4a/PLA2G4A as gene linked to increased body weight and fat mass with a higher expression in adipose tissue of obese mice and pigs as well as in obese human subjects. 3. Ifgga2/IRGM as novel regulator of lipophagy protecting from excess hepatic lipid accumulation. 4. Nidd/DBA as a diabetogenic locus containing Kti12, Osbpl9, Ttc39a and Calr4 with differential expression in pancreatic islets and/or genetic variants. 5. miR-31 to be higher expressed in adipose tissue of obese and diabetic mice and humans targeting PPARy and GLUT4 and thereby involved in adipogenesis and insulin signaling. 6. Gjb4 as novel gene triggering the development of T2D by reducing insulin secretion, inducing apoptosis and inhibiting proliferation. The performed studies confirmed the complexity and strong genetic heritability character of obesity and T2D. A high number of genetic variations, each with a small effect, are collectively influencing the degree and severity of the disease. The use of mouse outcross populations is a valid tool for disease gene identification; however, to facilitate and accelerate the process of gene identification the combination of mouse cross data with advanced sequencing resources and the publicly available data sets are essential. The main goal for future studies should be the translation of these novel molecular discoveries to useful treatment therapies. More recently, several classes of novel unimolecular combination therapeutics have emerged with superior efficacy than currently prescribed options and pose the potential to reverse obesity and T2D (Finan et al., 2015). The glucagon-like peptide-1 (GLP-1)- estrogen conjugate, which targets estrogen into cells expressing GLP-1 receptors, was shown to improve energy, glucose and lipid metabolism as well as to reduce food reward (Finan et al., 2012; Schwenk et al., 2014; Vogel et al., 2016). Another possibility is the development of miRNA-based therapeutics to prevent obesity and T2D, such as miRNA mimetics, anti-miRNA oligonucleotides and exosomes loaded with miRNAs (Ji and Guo, 2019; Gottmann et al., 2020). As already described, genome-wide association studies for polygenic obesity and T2D traits in humans have also led to the identification of numerous gene variants with modest effect, most of them having an unknown function (Yazdi et al., 2015). These discoveries resulted in novel animal models and have illuminated new biologic pathways. Therefore, the integration of mouse-human genetic approaches and the utilization of the synergistic effects have the potential to lead to the identification of more genes responsible for common Mendelian forms of obesity and T2D, as well as gene × gene and gene × environment interactions (Yazdi et al., 2015; Ingelsson and McCarthy, 2018). This combination may help to unravel the missing heritability of obesity and T2D, to identify novel drug targets and to design more efficient and personalized obesity prevention and management programs. Y1 - 2021 CY - Potsdam ER - TY - JOUR A1 - Herpich, Catrin A1 - Haß, Ulrike A1 - Kochlik, Bastian Max A1 - Franz, Kristina A1 - Laeger, Thomas A1 - Klaus, Susanne A1 - Bosy-Westphal, Anja A1 - Norman, Kristina T1 - Postprandial dynamics and response of fibroblast growth factor 21 in older adults JF - Clinical Nutrition N2 - Background & aims: Fibroblast growth factor 21 (FGF21) plays a pivotal role in glucose and lipid metabolism and has been proposed as a longevity hormone. However, elevated plasma FGF21 concentrations are paradoxically associated with mortality in higher age and little is known about the postprandial regulation of FGF21 in older adults. In this parallel group study, we investigated postprandial FGF21 dynamics and response in older (65-85 years) compared to younger (18-35 years) adults following test meals with varying macronutrient composition. Methods: Participants (n = 60 older; n = 60 younger) were randomized to one of four test meals: dextrose, high carbohydrate (HC), high fat (HF) or high protein (HP). Blood was drawn before and 15, 30, 60, 120, 240 min after meal ingestion. Postprandial dynamics were evaluated using repeated measures ANCOVA. FGF21 response was assessed by incremental area under the curve. Results: Fasting FGF21 concentrations were significantly higher in older adults. FGF21 dynamics were affected by test meal (p < 0.001) and age (p = 0.013), when adjusted for BMI and fasting FGF21. Postprandial FGF21 concentrations steadily declined over 240 min in both age groups after HF and HP, but not after dextrose or HC ingestion. At 240 min, FGF21 concentrations were significantly higher in older than in younger adults following dextrose (133 pg/mL, 95%CI: 103, 172 versus 91.2 pg/mL, 95%CI: 70.4, 118; p = 0.044), HC (109 pg/mL, 95%CI: 85.1, 141 versus 70.3 pg/mL, 95%CI: 55.2, 89.6; p = 0.014) and HP ingestion (45.4 pg/mL, 95%CI: 34.4, 59.9 versus 27.9 pg/mL 95%CI: 20.9, 37.1; p = 0.018). FGF21 dynamics and response to HF were similar for both age groups. Conclusions: The age-specific differences in postprandial FGF21 dynamics and response in healthy adults, potentially explain higher FGF21 concentrations in older age. Furthermore, there appears to be a significant impact of acute and recent protein intake on FGF21 secretion. Y1 - 2021 U6 - https://doi.org/10.1016/j.clnu.2021.04.037 SN - 0261-5614 SN - 1532-1983 VL - 40 IS - 6 SP - 3765 EP - 3771 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Perez-Cornago, Aurora A1 - Crowe, Francesca L. A1 - Appleby, Paul N. A1 - Bradbury, Kathryn E. A1 - Wood, Angela M. A1 - Jakobsen, Marianne Uhre A1 - Johnson, Laura A1 - Sacerdote, Carlotta A1 - Steur, Marinka A1 - Weiderpass, Elisabete A1 - Wurtz, Anne Mette L. A1 - Kuhn, Tilman A1 - Katzke, Verena A1 - Trichopoulou, Antonia A1 - Karakatsani, Anna A1 - La Vecchia, Carlo A1 - Masala, Giovanna A1 - Tumino, Rosario A1 - Panico, Salvatore A1 - Sluijs, Ivonne A1 - Skeie, Guri A1 - Imaz, Liher A1 - Petrova, Dafina A1 - Quiros, J. Ramon A1 - Yohar, Sandra Milena Colorado A1 - Jakszyn, Paula A1 - Melander, Olle A1 - Sonestedt, Emily A1 - Andersson, Jonas A1 - Wennberg, Maria A1 - Aune, Dagfinn A1 - Riboli, Elio A1 - Schulze, Matthias Bernd A1 - di Angelantonio, Emanuele A1 - Wareham, Nicholas J. A1 - Danesh, John A1 - Forouhi, Nita G. A1 - Butterworth, Adam S. A1 - Key, Timothy J. T1 - Plant foods, dietary fibre and risk of ischaemic heart disease in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort JF - International journal of epidemiology N2 - Background: Epidemiological evidence indicates that diets rich in plant foods are associated with a lower risk of ischaemic heart disease (IHD), but there is sparse information on fruit and vegetable subtypes and sources of dietary fibre. This study examined the associations of major plant foods, their subtypes and dietary fibre with risk of IHD in the European Prospective Investigation into Cancer and Nutrition (EPIC). Methods: We conducted a prospective analysis of 490 311 men and women without a history of myocardial infarction or stroke at recruitment (12.6 years of follow-up, n cases = 8504), in 10 European countries. Dietary intake was assessed using validated questionnaires, calibrated with 24-h recalls. Multivariable Cox regressions were used to estimate hazard ratios (HR) of IHD. Results: There was a lower risk of IHD with a higher intake of fruit and vegetables combined [HR per 200 g/day higher intake 0.94, 95% confidence interval (CI): 0.90-0.99, P-trend = 0.009], and with total fruits (per 100 g/day 0.97, 0.95-1.00, P-trend = 0.021). There was no evidence for a reduced risk for fruit subtypes, except for bananas. Risk was lower with higher intakes of nuts and seeds (per 10 g/day 0.90, 0.82-0.98, Ptrend = 0.020), total fibre (per 10 g/day 0.91, 0.85-0.98, P-trend = 0.015), fruit and vegetable fibre (per 4 g/day 0.95, 0.91-0.99, P-trend = 0.022) and fruit fibre (per 2 g/day 0.97, 0.95-1.00, P-trend = 0.045). No associations were observed between vegetables, vegetables subtypes, legumes, cereals and IHD risk. Conclusions: In this large prospective study, we found some small inverse associations between plant foods and IHD risk, with fruit and vegetables combined being the most strongly inversely associated with risk. Whether these small associations are causal remains unclear. KW - fruit KW - vegetables KW - legumes KW - nuts KW - seeds KW - coronary heart disease Y1 - 2021 U6 - https://doi.org/10.1093/ije/dyaa155 SN - 0300-5771 SN - 1464-3685 VL - 50 IS - 1 SP - 212 EP - 222 PB - Oxford Univ. Press CY - Oxford ER - TY - GEN A1 - de Pinho Tavares Leal, Pedro Ernesto A1 - da Silva, Alexandre Alves A1 - Rocha-Gomes, Arthur A1 - Riul, Tania Regina A1 - Cunha, Rennan Augusto A1 - Reichetzeder, Christoph A1 - Villela, Daniel Campos T1 - High-Salt Diet in the Pre- and Postweaning Periods Leads to Amygdala Oxidative Stress and Changes in Locomotion and Anxiety-Like Behaviors of Male Wistar Rats T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - High-salt (HS) diets have recently been linked to oxidative stress in the brain, a fact that may be a precursor to behavioral changes, such as those involving anxiety-like behavior. However, to the best of our knowledge, no study has evaluated the amygdala redox status after consuming a HS diet in the pre- or postweaning periods. This study aimed to evaluate the amygdala redox status and anxiety-like behaviors in adulthood, after inclusion of HS diet in two periods: preconception, gestation, and lactation (preweaning); and only after weaning (postweaning). Initially, 18 females and 9 male Wistar rats received a standard (n = 9 females and 4 males) or a HS diet (n = 9 females and 5 males) for 120 days. After mating, females continued to receive the aforementioned diets during gestation and lactation. Weaning occurred at 21-day-old Wistar rats and the male offspring were subdivided: control-control (C-C)—offspring of standard diet fed dams who received a standard diet after weaning (n = 9–11), control-HS (C-HS)—offspring of standard diet fed dams who received a HS diet after weaning (n = 9–11), HS-C—offspring of HS diet fed dams who received a standard diet after weaning (n = 9–11), and HS-HS—offspring of HS diet fed dams who received a HS diet after weaning (n = 9–11). At adulthood, the male offspring performed the elevated plus maze and open field tests. At 152-day-old Wistar rats, the offspring were euthanized and the amygdala was removed for redox state analysis. The HS-HS group showed higher locomotion and rearing frequency in the open field test. These results indicate that this group developed hyperactivity. The C-HS group had a higher ratio of entries and time spent in the open arms of the elevated plus maze test in addition to a higher head-dipping frequency. These results suggest less anxiety-like behaviors. In the analysis of the redox state, less activity of antioxidant enzymes and higher levels of the thiobarbituric acid reactive substances (TBARS) in the amygdala were shown in the amygdala of animals that received a high-salt diet regardless of the period (pre- or postweaning). In conclusion, the high-salt diet promoted hyperactivity when administered in the pre- and postweaning periods. In animals that received only in the postweaning period, the addition of salt induced a reduction in anxiety-like behaviors. Also, regardless of the period, salt provided amygdala oxidative stress, which may be linked to the observed behaviors. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1253 KW - high-sodium KW - open-field KW - elevated plus-maze KW - pre-natal KW - post-natal KW - redox state Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-557432 SN - 1866-8372 SP - 1 EP - 12 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - de Pinho Tavares Leal, Pedro Ernesto A1 - da Silva, Alexandre Alves A1 - Rocha-Gomes, Arthur A1 - Riul, Tania Regina A1 - Cunha, Rennan Augusto A1 - Reichetzeder, Christoph A1 - Villela, Daniel Campos T1 - High-Salt Diet in the Pre- and Postweaning Periods Leads to Amygdala Oxidative Stress and Changes in Locomotion and Anxiety-Like Behaviors of Male Wistar Rats JF - Frontiers in Behavioral Neuroscience N2 - High-salt (HS) diets have recently been linked to oxidative stress in the brain, a fact that may be a precursor to behavioral changes, such as those involving anxiety-like behavior. However, to the best of our knowledge, no study has evaluated the amygdala redox status after consuming a HS diet in the pre- or postweaning periods. This study aimed to evaluate the amygdala redox status and anxiety-like behaviors in adulthood, after inclusion of HS diet in two periods: preconception, gestation, and lactation (preweaning); and only after weaning (postweaning). Initially, 18 females and 9 male Wistar rats received a standard (n = 9 females and 4 males) or a HS diet (n = 9 females and 5 males) for 120 days. After mating, females continued to receive the aforementioned diets during gestation and lactation. Weaning occurred at 21-day-old Wistar rats and the male offspring were subdivided: control-control (C-C)—offspring of standard diet fed dams who received a standard diet after weaning (n = 9–11), control-HS (C-HS)—offspring of standard diet fed dams who received a HS diet after weaning (n = 9–11), HS-C—offspring of HS diet fed dams who received a standard diet after weaning (n = 9–11), and HS-HS—offspring of HS diet fed dams who received a HS diet after weaning (n = 9–11). At adulthood, the male offspring performed the elevated plus maze and open field tests. At 152-day-old Wistar rats, the offspring were euthanized and the amygdala was removed for redox state analysis. The HS-HS group showed higher locomotion and rearing frequency in the open field test. These results indicate that this group developed hyperactivity. The C-HS group had a higher ratio of entries and time spent in the open arms of the elevated plus maze test in addition to a higher head-dipping frequency. These results suggest less anxiety-like behaviors. In the analysis of the redox state, less activity of antioxidant enzymes and higher levels of the thiobarbituric acid reactive substances (TBARS) in the amygdala were shown in the amygdala of animals that received a high-salt diet regardless of the period (pre- or postweaning). In conclusion, the high-salt diet promoted hyperactivity when administered in the pre- and postweaning periods. In animals that received only in the postweaning period, the addition of salt induced a reduction in anxiety-like behaviors. Also, regardless of the period, salt provided amygdala oxidative stress, which may be linked to the observed behaviors. KW - high-sodium KW - open-field KW - elevated plus-maze KW - pre-natal KW - post-natal KW - redox state Y1 - 2022 U6 - https://doi.org/10.3389/fnbeh.2021.779080 SN - 1662-5153 VL - 15 SP - 1 EP - 12 PB - Frontiers Research Foundation CY - Lausanne, Schweiz ER - TY - JOUR A1 - Hauffe, Robert A1 - Rath, Michaela A1 - Schell, Mareike A1 - Ritter, Katrin A1 - Kappert, Kai A1 - Deubel, Stefanie A1 - Ott, Christiane A1 - Jähnert, Markus A1 - Jonas, Wenke A1 - Schürmann, Annette A1 - Kleinridders, André T1 - HSP60 reduction protects against diet-induced obesity by modulating energy metabolism in adipose tissue JF - Molecular Metabolism N2 - Objective Insulin regulates mitochondrial function, thereby propagating an efficient metabolism. Conversely, diabetes and insulin resistance are linked to mitochondrial dysfunction with a decreased expression of the mitochondrial chaperone HSP60. The aim of this investigation was to determine the effect of a reduced HSP60 expression on the development of obesity and insulin resistance. Methods Control and heterozygous whole-body HSP60 knockout (Hsp60+/−) mice were fed a high-fat diet (HFD, 60% calories from fat) for 16 weeks and subjected to extensive metabolic phenotyping. To understand the effect of HSP60 on white adipose tissue, microarray analysis of gonadal WAT was performed, ex vivo experiments were performed, and a lentiviral knockdown of HSP60 in 3T3-L1 cells was conducted to gain detailed insights into the effect of reduced HSP60 levels on adipocyte homeostasis. Results Male Hsp60+/− mice exhibited lower body weight with lower fat mass. These mice exhibited improved insulin sensitivity compared to control, as assessed by Matsuda Index and HOMA-IR. Accordingly, insulin levels were significantly reduced in Hsp60+/− mice in a glucose tolerance test. However, Hsp60+/− mice exhibited an altered adipose tissue metabolism with elevated insulin-independent glucose uptake, adipocyte hyperplasia in the presence of mitochondrial dysfunction, altered autophagy, and local insulin resistance. Conclusions We discovered that the reduction of HSP60 in mice predominantly affects adipose tissue homeostasis, leading to beneficial alterations in body weight, body composition, and adipocyte morphology, albeit exhibiting local insulin resistance. KW - Mitochondria KW - Stress response KW - Obesity KW - Glucose homeostasis KW - Insulin resistance KW - Adipose tissue Y1 - 2021 U6 - https://doi.org/10.1016/j.molmet.2021.101276 SN - 2212-8778 VL - 53 SP - 1 EP - 14 PB - Elsevier CY - Amsterdam, Niederlande ER - TY - THES A1 - Herpich, Catrin T1 - Fibroblast growth factor 21 and its association with nutritional stimuli in older age N2 - Fibroblast growth differentiation factor 21 (FGF21) is known as a pivotal regulator of the glucose and lipid metabolism. As such, it is considered beneficial and has even been labelled a longevity hormone. Nevertheless, recent observational studies have shown that FGF21 is increased in higher age with possible negative effects such as loss of lean and bone mass as well as decreased survival. Hepatic FGF21 secretion can be induced by various nutritional stimuli such as starvation, high carbohydrate and fat intake as well as protein deficiency.. So far it is still unclear whether the FGF21 response to different macronutrients is altered in older age. An altered response would potentially contribute to explain the higher FGF21 concentrations found in older age. In this publication-based doctoral dissertation, a cross-sectional study as well as a dietary challenge were conducted to investigate the influence of nutrition on FGF21 concentrations and response in older age. In a cross-sectional study, FGF21 concentrations were assessed in older patients with and without cachexia anorexia syndrome anorexia syndrome compared to an older community-dwelling control group. Cachexia anorexia syndrome is a multifactorial syndrome frequently occurring in old age or in the context of an underlying disease. It is characterized by a severe involuntary weight loss, loss of appetite (anorexia) and reduced food intake, therefore representing a state of severe nutrient deficiency, in some aspects similar to starvation. The highest FGF21 concentrations were found in patients with cachexia anorexia syndrome. Moreover, FGF21 was positively correlated with weight loss and loss of appetite. In addition, cachexia anorexia syndrome itself was associated with FGF21 independent of sex, age and body mass index. As cachectic patients presumably exhibit protein malnutrition and FGF21 has been proposed a marker for protein insufficiency, the higher levels of FGF21 in patients with cachexia anorexia syndrome might be partly explained by insufficient protein intake. In order to investigate the acute response of FGF21 to different nutritional stimuli, a dietary challenge with a parallel group design was conducted. Here, healthy older (65-85 years) and younger (18-35 years) adults were randomized to one of four test meals: a dextrose drink, a high carbohydrate, high fat or high protein meal. Over the course of four hours, postprandial FGF21 concentrations (dynamics) were assessed and the FGF21 response (incremental area under the curve) to each test meal was examined.. In a sub-group of older and younger women, also the adiponectin response was investigated, as adiponectin is a known mediator of FGF21 effects on glucose and lipid metabolism. The dietary meal challenge revealed that dextrose and high carbohydrate intake result in higher FGF21 concentrations after four hours in older adults. This was partly explained by higher postprandial glucose concentrations in the old. For high fat ingestion no age differences were found. For the first time, acute FGF21 response to high protein intake was shown. Here, protein ingestion resulted in lower FGF21 concentrations in younger compared to older adults. Furthermore, sufficient protein intake, according to age-dependent recommendations, of the previous day, was associated with lower FGF21 concentrations in both age groups. The higher FGF21 response to dextrose ingestion resulted in a higher adiponectin response in older women, independent of fat mass, insulin resistance, triglyceride concentrations, inflammation and oxidative stress. Following the high fat meal, adiponectin concentrations declined in older women. Adiponectin response was not affected by meal composition in younger women. In summary, this thesis showed a positive association of FGF21 and cachexia anorexia syndrome with concomitant anorexia in older patients. Regarding the acute FGF21 response, a higher response following dextrose and carbohydrate ingestion was found in older compared with younger subjects. This might be attributed to a higher glucose response in older age. Furthermore, it was shown that the higher FGF21 response after dextrose ingestion possibly contributes to a higher adiponectin response in older women, independent of potential metabolic and inflammatory confounders. Acute protein ingestion resulted in a significant decrease in FGF21 concentrations. Moreover, protein intake of the previous day was inversely associated with fasting FGF21 concentrations. This might explain why FGF21 concentrations are higher in cachexia anorexia syndrome. These results therefore support the role of FGF21 as a sensor of protein restriction. N2 - Der Fibroblasten Wachstumsfaktor 21 (FGF21) gilt als wichtiger Regulator des Glukose- und Fettstoffwechsels. Es werden ihm verschiedene förderliche Eigenschaften zugeschrieben und er wurde darüber hinaus als Langlebigkeitshormon bezeichnet. Nichtsdestotrotz konnten Beobachtungsstudien zeigen, dass FGF21 Konzentration im Alter erhöht sind und möglicherweise mit negativen Auswirkungen, wie dem Verlust von Muskel- und Knochenmasse sowie einer geringeren Überlebenswahrscheinlichkeit, verbunden sind. FGF21 Sekretion in der Leber kann durch Hungern und verschiedene Makronährstoffe, wie hohe Kohlenhydrat- und Fettaufnahme, sowie einem Proteinmangel, induziert werden. Bisher ist jedoch unklar, ob sich die FGF21 Response auf verschiedene Makronährstoffe zwischen älteren und jüngeren Erwachsenen unterscheidet. Eine veränderte Response, könnte dazu beitragen die höheren FGF21 Konzentrationen im Alter zu erklären. In dieser vorliegenden kumulativen Dissertation wurden eine Querschnittsstudie sowie ein experimenteller Mahlzeitentest durchgeführt, um den Einfluss von Ernährung auf FGF21 Konzentrationen und die FGF21 Response im Alter zu untersuchen. In der Querschnittsstudie wurden FGF21 Konzentration von älteren PatientInnen mit und ohne Kachexie-Anorexie Syndrom sowie einer älteren Kontrollgruppe verglichen. Kachexie-Anorexie Syndrom ist ein multifaktorielles Syndrom, welches häufig im Alter und im Rahmen verschiedener Erkrankungen auftritt. Charakteristisch hierfür ist ein starker ungewollter Gewichtsverlust, Appetitverlust (Anorexie) sowie eine verminderte Nahrungsaufnahme. Daher repräsentiert das Kachexie-Anorexie Syndrom einen Zustand des schwerwiegenden Nährstoffmangels, der mit Unterernährung bei langanhaltenden Hungerphasen vergleichbar ist. Die höchsten FGF21 Konzentrationen wiesen PatientInnen mit Kachexie-Anorexie Syndrom auf. Des Weiteren korrelierte FGF21 positiv mit Gewichts- und Appetitverlust. Zusätzlich war das Kachexie-Anorexie Syndrom unabhängig von Alter, Geschlecht und BMI mit FGF21 assoziiert. Es ist davon auszugehen, dass PatientInnen mit Kachexie-Anorexie Syndrom eine unzureichende Proteinzufuhr aufweisen. Da FGF21 als Marker für Proteinrestriktion gilt, könnten die hohen FGF21 Konzentrationen bei Kachexie-Anorexie Syndrom teilweise durch eine zu geringe Proteinzufuhr erklärt werden. Um die akute Response von FGF21 auf verschiedene Makronährstoffe zu untersuchen, wurde ein Mahlzeitentest mit parallelen Gruppen durchgeführt. Hierfür erhielten ältere (65-85 Jahre) und jüngere (18-35 Jahre) Erwachsene eine von vier verschiedenen Testmahlzeiten (Dextrose Getränk, Kohlenhydrat-, Fett- und Proteinreiche Mahlzeit). Über vier Stunden wurden postprandiale FGF21 Konzentrationen (Dynamik) bestimmt und die FGF21 Response (inkrementelle Fläche unter der Kurve) auf jede Testmahlzeit untersucht. In einer Subgruppe von älteren und jüngeren Frauen wurde außerdem die Adiponektin Response bestimmt, da Adiponektin bekanntermaßen die Effekte von FGF21 auf den Glukose- und Fettstoffwechsel mediiert. Der Mahlzeitentest konnte zeigen, dass Dextrose und die kohlenhydratreiche Mahlzeit bei älteren Erwachsenen zu höheren FGF21 Konzentrationen nach vier Stunden führten. Dies könnte durch die höheren postprandialen Glukose Konzentrationen der Älteren erklärt werden. Die FGF21 Response auf die fettreiche Mahlzeit wies keine Altersunterschiede auf. Zum ersten Mal konnte die akute FGF21 Response auf eine proteinreiche Mahlzeit gezeigt werden. Hierbei führte die Mahlzeit bei jüngeren im Vergleich zu älteren Erwachsenen zu niedrigeren FGF21 Konzentration nach vier Stunden. Des Weiteren, war das Erreichen der altersspezifischen Proteinzufuhr des Vortrags bei beiden Altersgruppen mit niedrigeren nüchtern FGF21 Konzentrationen assoziiert. Bei älteren Frauen führte die höhere FGF21 Response nach Dextrose Aufnahme zu einer höheren Adiponektin Response, unabhängig von Fettmasse, Insulinresistenz, Triglyzeride Konzentrationen, Inflammation und oxidativem Stress. Nach Einnahme der fettreichen Mahlzeit sanken die Adiponektin Konzentrationen bei älteren Frauen, während bei jüngeren Frauen die Adiponektin Response nicht durch die Zusammensetzung der Mahlzeit beeinflusst wurde. Zusammenfassend konnte diese Dissertation eine positive Assoziation von FGF21 mit Kachexie-Anorexie Syndrom bei gleichzeitiger Anorexie bei älteren PatientInnen zeigen. Bezüglich der akuten Response von FGF21 zeigte sich eine höhere Response auf Dextrose und Kohlenhydrat-Aufnahme bei älteren im Vergleich zu jüngeren ProbandInnen. Dies ist vermutlich auf die erhöhte Glukose Response im Alter zurückzuführen. Des Weiteren konnte gezeigt werden, dass eine höhere FGF21 Response auf Dextrose bei älteren Frauen mit einer veränderten Adiponektin Response einhergingen, unabhängig von potentiellen metabolischen und inflammatorischen Einflussfaktoren. Eine akute hohe Proteinaufnahme führte zu einem deutlichen Abfall der postprandialen FGF21 Konzentrationen. Zudem bestand eine inverse Assoziation zwischen FGF21 Nüchternkonzentrationen und der Proteinzufuhr des Vortags. Dies könnte zum Teil erklären, warum FGF21 Konzentrationen bei Kachexie-Anorexie Syndrom erhöht sind. Demnach unterstützen diese Ergebnisse auch die Rolle von FGF21 als Sensor für Proteinrestriktion. KW - Ageing KW - FGF21 KW - protein KW - postprandial response Y1 - 2021 ER - TY - THES A1 - Engel, Anika T1 - Endocrine effects of plasticizers and the development of a breast cell-based toxicity screening system N2 - Humans are frequently exposed to a variety of endocrine disrupting chemicals (EDCs), which can cause harmful effects, e.g. disturbance of growth, development and reproduction, and cancer (UBA, 2016). EDCs are often components of synthetically manufactured products. Materials made of plastics, building materials, electronic items, textiles or cosmetic products can be particularly contaminated (Ain et al., 2021). One group of EDCs that has gained increased interest in recent years is phthalates. They are used as plasticizers in plastic materials to which people are daily exposed to. Phthalate plasticizers exert their harmful effects among others via activation of the estrogen receptor α (ERα), the estrogen receptor β (ERβ) and via inhibition of the androgen receptor (AR). Some phthalates have already been classified by the EU as Cancerogenic-, Mutagenic-, Reprotoxic- (CMR) substances and their use in industry has been restricted. After oral ingestion, phthalates are metabolized and are finally excreted with the urine. Numerous toxicological studies exist on phthalates, but mainly with the parent substances, not with their primary and secondary metabolites. In the course of the restriction of phthalates by the EU, the phthalate-free plasticizer di-isononylcyclohexane-1,2-dicarboxylate (DINCH®), was introduced to the market. So far, almost no toxicologically relevant properties have been identified for DINCH®. However, the effects of DINCH® have only been studied in animal experiments and, as with phthalates, almost exclusively with the parent substance. However, toxic effects of a particular compound may be induced by its metabolites and not by the parent compound itself. Therefore, potential endocrine effects of 15 phthalates, 19 phthalate metabolites, DINCH®, and five of its metabolites were investigated using reporter gene assays on the ERα, ERβ, and the AR. In addition, studies of the influence of some selected plasticizers on peroxisome proliferator-activated receptor α (PPARα) and peroxisome proliferator-activated receptor γ (PPARγ) activity were performed. Furthermore, a H295R steroidogenesis assay was performed to determine the influence of DINCH® and its metabolites on estradiol or testosterone synthesis. Analysis of the experiments shows that the phthalates either stimulated or inhibited ERα and ERβ activity and inhibited AR activity, whereas the phthalate metabolites did not affect the activity of these human hormone receptors. In contrast, metabolites of di-(2-ethylhexyl) phthalate (DEHP) stimulated transactivation of the human PPARα and PPARγ in analogous reporter gene assays, although DEHP itself did not activate these nuclear receptors. Therefore, primary and secondary phthalate metabolites appear to exert different effects at the molecular level compared to the parent compounds. Similarly, the results showed that the phthalate-free plasticizer DINCH® itself did not affect the activity of ERα, ERβ, AR, PPARα and PPARγ, while the DINCH® metabolites were shown to activate all these receptors. In the case of AR, DINCH® metabolites mainly enhanced AR activity stimulated by dihydrotestosterone (DHT). In the H295R steroidogenesis assay, neither DINCH® nor any of its metabolites affected estradiol or testosterone synthesis. Primary and secondary metabolites of DINCH® thus exert different effects at the molecular level than DINCH® itself. However, all these in vitro effects of DINCH® metabolites were observed only at high concentrations, which were about three orders of magnitude higher than the reported DINCH® metabolite concentrations in human urine. Therefore, the in vitro data does not support the assumption that DINCH® or any of the metabolites studied could have significant endocrine effects in vivo at relevant exposure levels in humans. Following the demonstration of direct and indirect endocrine effects of the studied plasticizers, a new effect-based in vitro 3D screening tool for toxicity assays of non-genotoxic carcinogens was developed using estrogen receptor-negative (ER-) MCF10-A cells and estrogen receptor-positive (ER+) MCF-12A cells. This arose from the background that breast cancer is the most common cancer occurring in women and estrogenic substances, such as phthalates, can probably influence the disease. The human mammary epithelial cell lines MCF-10A and MCF-12A form well-differentiated acini-like structures when cultured in three-dimensional Matrigel culture for a period of 20 days. The model should make it possible to detect substance effects on cell differentiation and growth, on mammary cell acini, and to differentiate between estrogenic and non-estrogenic effects at the same time. In the present study, both cell lines were tested for their suitability as an effect-based in vitro assay system for non-genotoxic carcinogens. An Automated Acinus Detection And Morphological Evaluation (ADAME) software solution has been developed for automatic acquisition of acinus images and determination of morphological parameters such as acinus size, lumen size, and acinus roundness. Several test substances were tested for their ability to affect acinus formation and cellular differentiation. Human epithelial growth factor (EGF) stimulated acinus growth for both cell lines, while all trans retinoic acid (RA) inhibited acinar growth. The potent estrogen 17β-estradiol had no effect on acinus formation of MCF-10A cells but resulted in larger MCF-12A acini. Thus, the parallel use of both cell lines together with the developed high content screening and evaluation tool allows the rapid identification of the estrogenic and cancerogenic properties of a given test compound. The morphogenesis of the acini was only slightly affected by the test substances. On the one hand, this suggests a robust test system, on the other hand, it probably cannot detect low-potent estrogenic compounds such as phthalates or DINCH®. The advantage of the robustness of the system, however, may be that vast numbers of "positive" results with questionable biological relevance could be avoided, such as those observed in sensitive reporter gene assays. N2 - Der Mensch ist häufig einer Vielzahl von endokrin wirksamen Chemikalien (EDCs) ausgesetzt, die schädliche Auswirkungen haben können, z. B. Störungen von Wachstum, Entwicklung und Fortpflanzung sowie Krebs (UBA, 2016). Eine Gruppe von EDCs, die in den letzten Jahren vermehrt an Interesse gewonnen hat, sind die Phthalate. Diese werden als Weichmacher in Kunststoffen verwendet. Einige Phthalate wurden bereits von der EU als Kanzerogene-, Mutagene-, Reproduktionstoxische- (CMR) Stoffe klassifiziert und ihre Verwendung in der Industrie beschränkt. Nach der oralen Aufnahme werden Phthalate metabolisiert und schließlich mit dem Urin ausgeschieden. Für die Phthalate existieren zwar zahlreiche toxikologische Studien, allerdings vorwiegend mit den Ausgangssubstanzen, nicht mit ihren primären und sekundären Metaboliten. Im Zuge der Beschränkung der Phthalate durch die EU wurde der phthalatfreie Weichmacher Diisononylcyclohexan-1,2-dicarboxylat (DINCH®), auf den Markt gebracht. DINCH® werden bisher kaum toxikologisch relevante Eigenschaften zugeordnet. Bislang wurden die Auswirkungen von DINCH® jedoch lediglich in Tierexperimenten untersucht und fast ausschließlich mit der Stamm-Substanz. Aus diesem Grund wurden potentiell endokrine Effekte von 15 Phthalaten, 19 Phthalat-Metaboliten, DINCH® und fünf seiner Metabolite unter Verwendung von Reportergen-Assays auf den ERα, ERβ und den AR untersucht. Zusätzlich wurden Untersuchungen des Einflusses einiger ausgewählter Substanzen auf die Aktivität des Peroxisom-Proliferator-aktivierten Rezeptor α (PPARα) und des Peroxisom-Proliferator-aktivierten Rezeptor γ (PPARγ) durchgeführt. Weiterhin wurde ein H295R-Steroidogenese-Assay durchgeführt, um den Einfluss von DINCH® und seinen Metaboliten auf die Estradiol- oder Testosteronsynthese zu bestimmen. Die Auswertung der Experimente zeigt, dass die Phthalate entweder die ERα- und ERβ-Aktivität stimulierten oder hemmten und die AR-Aktivität hemmten, während die Phthalatmetaboliten keinen Einfluss auf die Aktivität dieser menschlichen Hormonrezeptoren hatten. Im Gegensatz dazu stimulierten die Metaboliten von Di-(2-ethylhexyl) phthalat (DEHP) die Transaktivierung des humanen PPARα und PPARγ in analogen Reportergen-Assays, obwohl DEHP selbst diese Kernrezeptoren nicht aktivierte. Daher scheinen primäre und sekundäre Phthalatmetaboliten im Vergleich zu den Ausgangsverbindungen unterschiedliche Wirkungen auf molekularer Ebene auszuüben. Ebenso zeigten die Ergebnisse, dass der phthaltfreie Weichmacher DINCH® selbst keinen Einfluss auf die Aktivität von ERα, ERβ, AR, PPARα und PPARγ hatte, während die DINCH®-Metaboliten nachweislich alle diese Rezeptoren aktivierten. Im Falle des AR verstärkten die DINCH®-Metaboliten vor allem die durch Dihydrotestosteron (DHT) stimulierte AR-Aktivität. Im H295R-Steroidogenese-Assay beeinflusste weder DINCH® noch einer seiner Metaboliten die Estradiol- oder Testosteronsynthese. Primäre und sekundäre Metabolite von DINCH® üben demnach auf molekularer Ebene andere Effekte aus als DINCH® selbst. Die hier gewonnenen in vitro-Daten unterstützen die Annahme nicht, dass DINCH® oder einer der untersuchten Metaboliten erhebliche endokrine Wirkungen in vivo bei relevanten Expositionsmengen beim Menschen haben könnten. Nachdem endokrine Wirkungen der untersuchten Weichmacher nachgewiesen werden konnten, wurde ein neues wirkungsbasiertes in vitro 3D-Screening-Tool für Toxizitäts-Tests nicht genotoxischer Karzinogene mit östrogenrezeptor-negativen (ER-) MCF10-A-Zellen und östrogenrezeptor-positiven (ER+) MCF-12A-Zellen entwickelt. Dies geschah aus dem Hintergrund, dass Brustkrebs die häufigste Krebsart bei Frauen ist und östrogene Stoffe wie Phthalate die Krankheit vermutlich beeinflussen können. Die humanen Brustepithelzelllinien MCF-10A und MCF-12A bilden gut differenzierte azinusartige Strukturen, wenn sie in dreidimensionaler Matrigel-Kultur über einen Zeitraum von 20 Tagen kultiviert werden. Das Modell sollte es ermöglichen Substanzeffekte auf die Zelldifferenzierung und das Zellwachstum der Brustzell-Azini zu detektieren und dabei gleichzeitig zwischen östrogenen und nicht östrogenen Effekten differenzieren. Eine Softwarelösung zur automatisierten Acinus Detection And Morphological Evaluation (ADAME) wurde zur automatischen Erfassung von Acinus-Bildern und zur Bestimmung morphologischer Parameter wie Azinus-Größe, Lumengröße und Azinus-Rundheit entwickelt. Eine Reihe von Testsubstanzen wurde auf ihre Fähigkeit getestet, die Azinusbildung und die zelluläre Differenzierung zu beeinflussen. Der humane epitheliale Wachstumsfaktor (EGF) stimulierte das Azinuswachstum für beide Zelllinien, während all-trans-Retinsäure (RA) das Azinuswachstum hemmte. Das starke Östrogen 17β-Östradiol hatte keinen Einfluss auf die Azinusbildung von MCF-10A-Azini, führte aber zu größeren MCF-12A-Azini. Die parallele Verwendung beider Zelllinien zusammen mit dem hierbei entwickelten High-Content-Screening- und Evaluierungstool ermöglicht somit die schnelle Identifizierung der östrogenen oder kanzerogenen Eigenschaften einer gegebenen Testverbindung. Die Morphogenese der Azini wurde durch die Testsubstanzen nur geringfügig beeinflusst. Dies spricht einerseits für ein robustes Testsystem, andererseits kann es wahrscheinlich keine niedrigpotenten östrogenen Verbindungen wie Phthalate oder DINCH® erkennen. Der Vorteil der Robustheit des Systems kann jedoch darin liegen, dass eine große Zahl "positiver" Ergebnisse mit fragwürdiger biologischer Relevanz vermieden werden könnte, wie sie bei empfindlichen Reportergen-Assays zu beobachten sind. KW - phthalates KW - 3D breast cell model KW - endocrine disruption Y1 - 2021 U6 - https://doi.org/10.25932/publishup-53117 ER - TY - THES A1 - Wandt, Viktoria Klara Veronika T1 - Trace elements, ageing, and sex BT - impact on genome stability maintenance Y1 - 2021 ER - TY - THES A1 - Reichmann, Robin T1 - Novel applications of machine learning techniques in epidemiology of age-related diseases BT - from multidimensional data modelling to risk prediction Y1 - 2021 ER - TY - GEN A1 - Wardelmann, Kristina A1 - Rath, Michaela A1 - Castro, José Pedro A1 - Blümel, Sabine A1 - Schell, Mareike A1 - Hauffe, Robert A1 - Schumacher, Fabian A1 - Flore, Tanina A1 - Ritter, Katrin A1 - Wernitz, Andreas A1 - Hosoi, Toru A1 - Ozawa, Koichiro A1 - Kleuser, Burkhard A1 - Weiß, Jürgen A1 - Schürmann, Annette A1 - Kleinridders, André T1 - Central acting Hsp10 regulates mitochondrial function, fatty acid metabolism and insulin sensitivity in the hypothalamus T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Mitochondria are critical for hypothalamic function and regulators of metabolism. Hypothalamic mitochondrial dysfunction with decreased mitochondrial chaperone expression is present in type 2 diabetes (T2D). Recently, we demonstrated that a dysregulated mitochondrial stress response (MSR) with reduced chaperone expression in the hypothalamus is an early event in obesity development due to insufficient insulin signaling. Although insulin activates this response and improves metabolism, the metabolic impact of one of its members, the mitochondrial chaperone heat shock protein 10 (Hsp10), is unknown. Thus, we hypothesized that a reduction of Hsp10 in hypothalamic neurons will impair mitochondrial function and impact brain insulin action. Therefore, we investigated the role of chaperone Hsp10 by introducing a lentiviral-mediated Hsp10 knockdown (KD) in the hypothalamic cell line CLU-183 and in the arcuate nucleus (ARC) of C57BL/6N male mice. We analyzed mitochondrial function and insulin signaling utilizing qPCR, Western blot, XF96 Analyzer, immunohistochemistry, and microscopy techniques. We show that Hsp10 expression is reduced in T2D mice brains and regulated by leptin in vitro. Hsp10 KD in hypothalamic cells induced mitochondrial dysfunction with altered fatty acid metabolism and increased mitochondria-specific oxidative stress resulting in neuronal insulin resistance. Consequently, the reduction of Hsp10 in the ARC of C57BL/6N mice caused hypothalamic insulin resistance with acute liver insulin resistance. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1165 KW - brain insulin signaling KW - mitochondria KW - oxidative stress KW - fatty acid metabolism Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-522985 SN - 1866-8372 IS - 5 ER - TY - JOUR A1 - Wardelmann, Kristina A1 - Rath, Michaela A1 - Castro, José Pedro A1 - Blümel, Sabine A1 - Schell, Mareike A1 - Hauffe, Robert A1 - Schumacher, Fabian A1 - Flore, Tanina A1 - Ritter, Katrin A1 - Wernitz, Andreas A1 - Hosoi, Toru A1 - Ozawa, Koichiro A1 - Kleuser, Burkhard A1 - Weiß, Jürgen A1 - Schürmann, Annette A1 - Kleinridders, André T1 - Central acting Hsp10 regulates mitochondrial function, fatty acid metabolism and insulin sensitivity in the hypothalamus JF - Antioxidants N2 - Mitochondria are critical for hypothalamic function and regulators of metabolism. Hypothalamic mitochondrial dysfunction with decreased mitochondrial chaperone expression is present in type 2 diabetes (T2D). Recently, we demonstrated that a dysregulated mitochondrial stress response (MSR) with reduced chaperone expression in the hypothalamus is an early event in obesity development due to insufficient insulin signaling. Although insulin activates this response and improves metabolism, the metabolic impact of one of its members, the mitochondrial chaperone heat shock protein 10 (Hsp10), is unknown. Thus, we hypothesized that a reduction of Hsp10 in hypothalamic neurons will impair mitochondrial function and impact brain insulin action. Therefore, we investigated the role of chaperone Hsp10 by introducing a lentiviral-mediated Hsp10 knockdown (KD) in the hypothalamic cell line CLU-183 and in the arcuate nucleus (ARC) of C57BL/6N male mice. We analyzed mitochondrial function and insulin signaling utilizing qPCR, Western blot, XF96 Analyzer, immunohistochemistry, and microscopy techniques. We show that Hsp10 expression is reduced in T2D mice brains and regulated by leptin in vitro. Hsp10 KD in hypothalamic cells induced mitochondrial dysfunction with altered fatty acid metabolism and increased mitochondria-specific oxidative stress resulting in neuronal insulin resistance. Consequently, the reduction of Hsp10 in the ARC of C57BL/6N mice caused hypothalamic insulin resistance with acute liver insulin resistance. KW - brain insulin signaling KW - mitochondria KW - oxidative stress KW - fatty acid metabolism Y1 - 2021 U6 - https://doi.org/10.3390/antiox10050711 SN - 2076-3921 VL - 10 IS - 5 PB - MDPI CY - Basel ER - TY - GEN A1 - Figueroa Campos, Gustavo A. A1 - Perez, Jeffrey Paulo H. A1 - Block, Inga A1 - Tchewonpi Sagu, Sorel A1 - Saravia Celis, Pedro A1 - Taubert, Andreas A1 - Rawel, Harshadrai Manilal T1 - Preparation of activated carbons from spent coffee and coffee parchment and assessment of their adsorbent efficiency T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The valorization of coffee wastes through modification to activated carbon has been considered as a low-cost adsorbent with prospective to compete with commercial carbons. So far, very few studies have referred to the valorization of coffee parchment into activated carbon. Moreover, low-cost and efficient activation methods need to be more investigated. The aim of this work was to prepare activated carbon from spent coffee grounds and parchment, and to assess their adsorption performance. The co-calcination processing with calcium carbonate was used to prepare the activated carbons, and their adsorption capacity for organic acids, phenolic compounds and proteins was evaluated. Both spent coffee grounds and parchment showed yields after the calcination and washing treatments of around 9.0%. The adsorption of lactic acid was found to be optimal at pH 2. The maximum adsorption capacity of lactic acid with standard commercial granular activated carbon was 73.78 mg/g, while the values of 32.33 and 14.73 mg/g were registered for the parchment and spent coffee grounds activated carbons, respectively. The Langmuir isotherm showed that lactic acid was adsorbed as a monolayer and distributed homogeneously on the surface. Around 50% of total phenols and protein content from coffee wastewater were adsorbed after treatment with the prepared activated carbons, while 44, 43, and up to 84% of hydrophobic compounds were removed using parchment, spent coffee grounds and commercial activated carbon, respectively; the adsorption efficiencies of hydrophilic compounds ranged between 13 and 48%. Finally, these results illustrate the potential valorization of coffee by-products parchment and spent coffee grounds into activated carbon and their use as low-cost adsorbent for the removal of organic compounds from aqueous solutions. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1158 KW - coffee by-products KW - spent coffee grounds KW - parchment KW - valorization KW - calcination KW - activated carbon KW - organic compounds adsorption Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-521914 SN - 1866-8372 IS - 8 ER - TY - JOUR A1 - Figueroa Campos, Gustavo Adolfo A1 - Perez, Jeffrey Paulo H. A1 - Block, Inga A1 - Sagu Tchewonpi, Sorel A1 - Saravia Celis, Pedro A1 - Taubert, Andreas A1 - Rawel, Harshadrai Manilal T1 - Preparation of activated carbons from spent coffee and coffee parchment and assessment of their adsorbent efficiency JF - Processes : open access journal N2 - The valorization of coffee wastes through modification to activated carbon has been considered as a low-cost adsorbent with prospective to compete with commercial carbons. So far, very few studies have referred to the valorization of coffee parchment into activated carbon. Moreover, low-cost and efficient activation methods need to be more investigated. The aim of this work was to prepare activated carbon from spent coffee grounds and parchment, and to assess their adsorption performance. The co-calcination processing with calcium carbonate was used to prepare the activated carbons, and their adsorption capacity for organic acids, phenolic compounds and proteins was evaluated. Both spent coffee grounds and parchment showed yields after the calcination and washing treatments of around 9.0%. The adsorption of lactic acid was found to be optimal at pH 2. The maximum adsorption capacity of lactic acid with standard commercial granular activated carbon was 73.78 mg/g, while the values of 32.33 and 14.73 mg/g were registered for the parchment and spent coffee grounds activated carbons, respectively. The Langmuir isotherm showed that lactic acid was adsorbed as a monolayer and distributed homogeneously on the surface. Around 50% of total phenols and protein content from coffee wastewater were adsorbed after treatment with the prepared activated carbons, while 44, 43, and up to 84% of hydrophobic compounds were removed using parchment, spent coffee grounds and commercial activated carbon, respectively; the adsorption efficiencies of hydrophilic compounds ranged between 13 and 48%. Finally, these results illustrate the potential valorization of coffee by-products parchment and spent coffee grounds into activated carbon and their use as low-cost adsorbent for the removal of organic compounds from aqueous solutions. KW - coffee by-products KW - spent coffee grounds KW - parchment KW - valorization KW - calcination KW - activated carbon KW - organic compounds adsorption Y1 - 2021 U6 - https://doi.org/10.3390/pr9081396 SN - 2227-9717 VL - 9 IS - 8 PB - MDPI CY - Basel ER - TY - JOUR A1 - Sagu Tchewonpi, Sorel A1 - Huschek, Gerd A1 - Homann, Thomas A1 - Rawel, Harshadrai Manilal T1 - Effect of sample preparation on the detection and quantification of selected nuts allergenic proteins by LC-MS/MS JF - Molecules : a journal of synthetic chemistry and natural product chemistry / Molecular Diversity Preservation International N2 - The detection and quantification of nut allergens remains a major challenge. The liquid chroma-tography tandem mass spectrometry (LC-MS/MS) is emerging as one of the most widely used methods, but sample preparation prior to the analysis is still a key issue. The objective of this work was to establish optimized protocols for extraction, tryptic digestion and LC-MS analysis of almond, cashew, hazelnut, peanut, pistachio and walnut samples. Ammonium bicar-bonate/urea extraction (Ambi/urea), SDS buffer extraction (SDS), polyvinylpolypyrroli-done (PVPP) extraction, trichloroacetic acid/acetone extraction (TCA/acetone) and chloro-form/methanol/sodium chloride precipitation (CM/NaCl) as well as the performances of con-ventional tryptic digestion and microwave-assisted breakdown were investigated. Overall, the protein extraction yields ranged from 14.9 ± 0.5 (almond extract from CM/NaCl) to 76.5 ± 1.3% (hazelnut extract from Ambi/urea). Electrophoretic profiling showed that the SDS extraction method clearly presented a high amount of extracted proteins in the range of 0–15 kDa, 15–35 kDa, 35–70 kDa and 70–250 kDa compared to the other methods. The linearity of the LC-MS methods in the range of 0 to 0.4 µg equivalent defatted nut flour was assessed and recovery of internal standards GWGG and DPLNV(d8)LKPR ranged from 80 to 120%. The identified bi-omarkers peptides were used to relatively quantifier selected allergenic protein form the inves-tigated nut samples. Considering the overall results, it can be concluded that SDS buffer allows a better protein extraction from almond, peanut and walnut samples while PVPP buffer is more appropriate for cashew, pistachio and hazelnut samples. It was also found that conventional overnight digestion is indicated for cashew, pistachio and hazelnut samples, while microwave assisted tryptic digestion is recommended for almond, hazelnut and peanut extracts. KW - nut allergenic proteins KW - protein extraction KW - sample preparation KW - tryptic digestion KW - microwave assisted digestion KW - SDS PAGE KW - LC-MS/MS Y1 - 2021 U6 - https://doi.org/10.3390/molecules26154698 SN - 1420-3049 VL - 26 IS - 15 PB - MDPI CY - Basel ER - TY - GEN A1 - Tchewonpi Sagu, Sorel A1 - Huschek, Gerd A1 - Homann, Thomas A1 - Rawel, Harshadrai Manilal T1 - Effect of sample preparation on the detection and quantification of selected nuts allergenic proteins by LC-MS/MS T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The detection and quantification of nut allergens remains a major challenge. The liquid chroma-tography tandem mass spectrometry (LC-MS/MS) is emerging as one of the most widely used methods, but sample preparation prior to the analysis is still a key issue. The objective of this work was to establish optimized protocols for extraction, tryptic digestion and LC-MS analysis of almond, cashew, hazelnut, peanut, pistachio and walnut samples. Ammonium bicar-bonate/urea extraction (Ambi/urea), SDS buffer extraction (SDS), polyvinylpolypyrroli-done (PVPP) extraction, trichloroacetic acid/acetone extraction (TCA/acetone) and chloro-form/methanol/sodium chloride precipitation (CM/NaCl) as well as the performances of con-ventional tryptic digestion and microwave-assisted breakdown were investigated. Overall, the protein extraction yields ranged from 14.9 ± 0.5 (almond extract from CM/NaCl) to 76.5 ± 1.3% (hazelnut extract from Ambi/urea). Electrophoretic profiling showed that the SDS extraction method clearly presented a high amount of extracted proteins in the range of 0–15 kDa, 15–35 kDa, 35–70 kDa and 70–250 kDa compared to the other methods. The linearity of the LC-MS methods in the range of 0 to 0.4 µg equivalent defatted nut flour was assessed and recovery of internal standards GWGG and DPLNV(d8)LKPR ranged from 80 to 120%. The identified bi-omarkers peptides were used to relatively quantifier selected allergenic protein form the inves-tigated nut samples. Considering the overall results, it can be concluded that SDS buffer allows a better protein extraction from almond, peanut and walnut samples while PVPP buffer is more appropriate for cashew, pistachio and hazelnut samples. It was also found that conventional overnight digestion is indicated for cashew, pistachio and hazelnut samples, while microwave assisted tryptic digestion is recommended for almond, hazelnut and peanut extracts. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1157 KW - nut allergenic proteins KW - sample preparation KW - protein extraction KW - tryptic digestion KW - microwave assisted digestion KW - SDS PAGE KW - LC-MS/MS Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-521871 SN - 1866-8372 IS - 15 ER - TY - JOUR A1 - Tchewonpi Sagu, Sorel A1 - Landgräber, Eva A1 - Henkel, Ina M. A1 - Huschek, Gerd A1 - Homann, Thomas A1 - Bußler, Sara A1 - Schlüter, Oliver A1 - Rawel, Harshadrai Manilal T1 - Effect of cereal α-amylase/trypsin inhibitors on developmental characteristics and abundance of digestive enzymes of mealworm larvae (Tenebrio molitor L.) JF - Insects : open access journal N2 - The objective of this work was to investigate the potential effect of cereal α-amylase/trypsin inhibitors (ATIs) on growth parameters and selective digestive enzymes of Tenebrio molitor L. larvae. The approach consisted of feeding the larvae with wheat, sorghum and rice meals containing different levels and composition of α-amylase/trypsin inhibitors. The developmental and biochemical characteristics of the larvae were assessed over feeding periods of 5 h, 5 days and 10 days, and the relative abundance of α-amylase and selected proteases in larvae were determined using liquid chromatography tandem mass spectrometry. Overall, weight gains ranged from 21% to 42% after five days of feeding. The larval death rate significantly increased in all groups after 10 days of feeding (p < 0.05), whereas the pupation rate was about 25% among larvae fed with rice (Oryza sativa L.) and Siyazan/Esperya wheat meals, and only 8% and 14% among those fed with Damougari and S35 sorghum meals. As determined using the Lowry method, the protein contents of the sodium phosphate extracts ranged from 7.80 ± 0.09 to 9.42 ± 0.19 mg/mL and those of the ammonium bicarbonate/urea reached 19.78 ± 0.16 to 37.47 ± 1.38 mg/mL. The total protein contents of the larvae according to the Kjeldahl method ranged from 44.0 and 49.9 g/100 g. The relative abundance of α-amylase, CLIP domain-containing serine protease, modular serine protease zymogen and C1 family cathepsin significantly decreased in the larvae, whereas dipeptidylpeptidase I and chymotrypsin increased within the first hours after feeding (p < 0.05). Trypsin content was found to be constant independently of time or feed material. Finally, based on the results we obtained, it was difficult to substantively draw conclusions on the likely effects of meal ATI composition on larval developmental characteristics, but their effects on the digestive enzyme expression remain relevant. KW - growth behavior KW - Tenebrio molitor larvae KW - feeding KW - cereal meals KW - α-amylase KW - digestive enzymes quantification KW - LC-MS/MS KW - trypsin inhibitors Y1 - 2021 U6 - https://doi.org/10.3390/insects12050454 SN - 2075-4450 VL - 12 IS - 5 PB - MDPI CY - Basel ER - TY - GEN A1 - Tchewonpi Sagu, Sorel A1 - Landgräber, Eva A1 - Henkel, Ina M. A1 - Huschek, Gerd A1 - Homann, Thomas A1 - Bußler, Sara A1 - Schlüter, Oliver K. A1 - Rawel, Harshadrai Manilal T1 - Effect of cereal α-amylase/trypsin inhibitors on developmental characteristics and abundance of digestive enzymes of mealworm larvae (Tenebrio molitor L.) T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The objective of this work was to investigate the potential effect of cereal α-amylase/trypsin inhibitors (ATIs) on growth parameters and selective digestive enzymes of Tenebrio molitor L. larvae. The approach consisted of feeding the larvae with wheat, sorghum and rice meals containing different levels and composition of α-amylase/trypsin inhibitors. The developmental and biochemical characteristics of the larvae were assessed over feeding periods of 5 h, 5 days and 10 days, and the relative abundance of α-amylase and selected proteases in larvae were determined using liquid chromatography tandem mass spectrometry. Overall, weight gains ranged from 21% to 42% after five days of feeding. The larval death rate significantly increased in all groups after 10 days of feeding (p < 0.05), whereas the pupation rate was about 25% among larvae fed with rice (Oryza sativa L.) and Siyazan/Esperya wheat meals, and only 8% and 14% among those fed with Damougari and S35 sorghum meals. As determined using the Lowry method, the protein contents of the sodium phosphate extracts ranged from 7.80 ± 0.09 to 9.42 ± 0.19 mg/mL and those of the ammonium bicarbonate/urea reached 19.78 ± 0.16 to 37.47 ± 1.38 mg/mL. The total protein contents of the larvae according to the Kjeldahl method ranged from 44.0 and 49.9 g/100 g. The relative abundance of α-amylase, CLIP domain-containing serine protease, modular serine protease zymogen and C1 family cathepsin significantly decreased in the larvae, whereas dipeptidylpeptidase I and chymotrypsin increased within the first hours after feeding (p < 0.05). Trypsin content was found to be constant independently of time or feed material. Finally, based on the results we obtained, it was difficult to substantively draw conclusions on the likely effects of meal ATI composition on larval developmental characteristics, but their effects on the digestive enzyme expression remain relevant. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1153 KW - growth behavior KW - Tenebrio molitor larvae KW - feeding KW - cereal meals KW - α-amylase/trypsin inhibitors KW - digestive enzymes quantification KW - LC-MS/MS Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-520924 SN - 1866-8372 IS - 5 ER - TY - THES A1 - Saussenthaler, Sophie T1 - The impact of DNA methylation on susceptibility to typ 2 diabetes in NZO mice N2 - The development of type 2 diabetes (T2D) is driven by genetic as well as life style factors. However, even genetically identical female NZO mice on a high-fat diet show a broad variation in T2D onset. The main objective of this study was to elucidate and investigate early epigenetic determinants of type 2 diabetes. Prior to other experiments, early fat content of the liver (<55.2 HU) in combination with blood glucose concentrations (>8.8 mM) were evaluated as best predictors of diabetes in NZO females. Then, DNA methylome and transcriptome were profiled to identify molecular pathophysiological changes in the liver before diabetes onset. The major finding of this thesis is that alterations in the hepatic DNA methylome precede diabetes onset. Of particular interest were 702 differentially methylated regions (DMRs), of which 506 DMRs had genic localization. These inter-individual DMRs were enriched by fivefold in the KEGG pathway type 2 diabetes mellitus, independent of the level of gene expression, demonstrating an epigenetic predisposition toward diabetes. Interestingly, among the list of hepatic DMRs, eleven DMRs were associated with known imprinted genes in the mouse genome. Thereby, six DMRs (Nap1l5, Mest, Plagl1, Gnas, Grb10 and Slc38a4) localized to imprinting control regions, including five iDMRs that exhibited hypermethylation in livers of diabetes-prone mice. This suggests that gain of DNA methylation in multiple loci of the paternal alleles has unfavourable metabolic consequences for the offspring. Further, the comparative liver transcriptome analysis demonstrated differences in expression levels of 1492 genes related to metabolically relevant pathways, such as citrate cycle and fatty acid metabolism. The integration of hepatic transcriptome and DNA methylome indicated that 449 differentially expressed genes were potentially regulated by DNA methylation, including genes implicated in insulin signaling. In addition, liver transcriptomic profiling of diabetes-resistant and diabetes-prone mice revealed a potential transcriptional dysregulation of 17 hepatokines, in particular Hamp. The hepatic expression of Hamp was decreased by 52% in diabetes-prone mice, on account of an increase in DNA methylation of promoter CpG-118. Hence, HAMP protein levels were lower in mice prone to develop diabetes, which correlated to higher liver triglyceride levels.. In sum, the identified DNA methylation changes appear to collectively favor the initiation and progression of diabetes in female NZO mice. In near future, epigenetic biomarkers are likely to contribute to improved diagnosis for T2D. KW - epigenetics KW - DNA methylation KW - RNAseq KW - fatty liver KW - type 2 diabetes KW - HAMP Y1 - 2021 ER - TY - JOUR A1 - Henkel-Oberländer, Janin A1 - Klauder, Julia A1 - Statz, Meike A1 - Wohlenberg, Anne-Sophie A1 - Kuipers, Sonja A1 - Vahrenbrink, Madita A1 - Püschel, Gerhard T1 - Enhanced Palmitate-Induced Interleukin-8 Formation in Human Macrophages by Insulin or Prostaglandin E₂ JF - Biomedicines : open access journal N2 - Macrophages in pathologically expanded dysfunctional white adipose tissue are exposed to a mix of potential modulators of inflammatory response, including fatty acids released from insulin-resistant adipocytes, increased levels of insulin produced to compensate insulin resistance, and prostaglandin E₂ (PGE₂) released from activated macrophages. The current study addressed the question of how palmitate might interact with insulin or PGE₂ to induce the formation of the chemotactic pro-inflammatory cytokine interleukin-8 (IL-8). Human THP-1 cells were differentiated into macrophages. In these macrophages, palmitate induced IL-8 formation. Insulin enhanced the induction of IL-8 formation by palmitate as well as the palmitate-dependent stimulation of PGE₂ synthesis. PGE₂ in turn elicited IL-8 formation on its own and enhanced the induction of IL-8 release by palmitate, most likely by activating the EP4 receptor. Since IL-8 causes insulin resistance and fosters inflammation, the increase in palmitate-induced IL-8 formation that is caused by hyperinsulinemia and locally produced PGE₂ in chronically inflamed adipose tissue might favor disease progression in a vicious feed-forward cycle. KW - macrophages KW - insulin KW - prostaglandin E2 KW - interleukin-8 KW - inflammation Y1 - 2021 U6 - https://doi.org/10.3390/biomedicines9050449 SN - 2227-9059 VL - 9 IS - 5 PB - MDPI CY - Basel ER - TY - GEN A1 - Henkel-Oberländer, Janin A1 - Klauder, Julia A1 - Statz, Meike A1 - Wohlenberg, Anne-Sophie A1 - Kuipers, Sonja A1 - Vahrenbrink, Madita T1 - Enhanced Palmitate-Induced Interleukin-8 Formation in Human Macrophages by Insulin or Prostaglandin E₂ T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Macrophages in pathologically expanded dysfunctional white adipose tissue are exposed to a mix of potential modulators of inflammatory response, including fatty acids released from insulin-resistant adipocytes, increased levels of insulin produced to compensate insulin resistance, and prostaglandin E₂ (PGE₂) released from activated macrophages. The current study addressed the question of how palmitate might interact with insulin or PGE₂ to induce the formation of the chemotactic pro-inflammatory cytokine interleukin-8 (IL-8). Human THP-1 cells were differentiated into macrophages. In these macrophages, palmitate induced IL-8 formation. Insulin enhanced the induction of IL-8 formation by palmitate as well as the palmitate-dependent stimulation of PGE₂ synthesis. PGE₂ in turn elicited IL-8 formation on its own and enhanced the induction of IL-8 release by palmitate, most likely by activating the EP4 receptor. Since IL-8 causes insulin resistance and fosters inflammation, the increase in palmitate-induced IL-8 formation that is caused by hyperinsulinemia and locally produced PGE₂ in chronically inflamed adipose tissue might favor disease progression in a vicious feed-forward cycle. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1149 KW - macrophages KW - insulin KW - prostaglandin E2 KW - interleukin-8 KW - inflammation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-518377 SN - 1866-8372 IS - 1149 ER - TY - THES A1 - Schjeide, Brit-Maren T1 - Development and characterization of the MoN-Light BoNT assay to determine the toxicity of botulinum neurotoxin in motor neurons differentiated from CRISPR-modified induced pluripotent stem cells T1 - Entwicklung und Charakterisierung des MoN-Light BoNT-Tests zur Bestimmung der Toxizität von Botulinum-Neurotoxin in Motorneuronen, die aus CRISPR-modifizierten induzierten pluripotenten Stammzellen differenziert wurden N2 - Botulinum neurotoxin (BoNT) is produced by the anaerobic bacterium Clostridium botulinum. It is one of the most potent toxins found in nature and can enter motor neurons (MN) to cleave proteins necessary for neurotransmission, resulting in flaccid paralysis. The toxin has applications in both traditional and esthetic medicine. Since BoNT activity varies between batches despite identical protein concentrations, the activity of each lot must be assessed. The gold standard method is the mouse lethality assay, in which mice are injected with a BoNT dilution series to determine the dose at which half of the animals suffer death from peripheral asphyxia. Ethical concerns surrounding the use of animals in toxicity testing necessitate the creation of alternative model systems to measure the potency of BoNT. Prerequisites of a successful model are that it is human specific; it monitors the complete toxic pathway of BoNT; and it is highly sensitive, at least in the range of the mouse lethality assay. One model system was developed by our group, in which human SIMA neuroblastoma cells were genetically modified to express a reporter protein (GLuc), which is packaged into neurosecretory vesicles, and which, upon cellular depolarization, can be released – or inhibited by BoNT – simultaneously with neurotransmitters. This assay has great potential, but includes the inherent disadvantages that the GLuc sequence was randomly inserted into the genome and the tumor cells only have limited sensitivity and specificity to BoNT. This project aims to improve these deficits, whereby induced pluripotent stem cells (iPSCs) were genetically modified by the CRISPR/Cas9 method to insert the GLuc sequence into the AAVS1 genomic safe harbor locus, precluding genetic disruption through non-specific integrations. Furthermore, GLuc was modified to associate with signal peptides that direct to the lumen of both large dense core vesicles (LDCV), which transport neuropeptides, and synaptic vesicles (SV), which package neurotransmitters. Finally, the modified iPSCs were differentiated into motor neurons (MNs), the true physiological target of BoNT, and hypothetically the most sensitive and specific cells available for the MoN-Light BoNT assay. iPSCs were transfected to incorporate one of three constructs to direct GLuc into LDCVs, one construct to direct GLuc into SVs, and one “no tag” GLuc control construct. The LDCV constructs fused GLuc with the signal peptides for proopiomelanocortin (hPOMC-GLuc), chromogranin-A (CgA-GLuc), and secretogranin II (SgII-GLuc), which are all proteins found in the LDCV lumen. The SV construct comprises a VAMP2-GLuc fusion sequence, exploiting the SV membrane-associated protein synaptobrevin (VAMP2). The no tag GLuc expresses GLuc non-specifically throughout the cell and was created to compare the localization of vesicle-directed GLuc. The clones were characterized to ensure that the GLuc sequence was only incorporated into the AAVS1 safe harbor locus and that the signal peptides directed GLuc to the correct vesicles. The accurate insertion of GLuc was confirmed by PCR with primers flanking the AAVS1 safe harbor locus, capable of simultaneously amplifying wildtype and modified alleles. The PCR amplicons, along with an insert-specific amplicon from candidate clones were Sanger sequenced to confirm the correct genomic region and sequence of the inserted DNA. Off-target integrations were analyzed with the newly developed dc-qcnPCR method, whereby the insert DNA was quantified by qPCR against autosomal and sex-chromosome encoded genes. While the majority of clones had off-target inserts, at least one on-target clone was identified for each construct. Finally, immunofluorescence was utilized to localize GLuc in the selected clones. In iPSCs, the vesicle-directed GLuc should travel through the Golgi apparatus along the neurosecretory pathway, while the no tag GLuc should not follow this pathway. Initial analyses excluded the CgA-GLuc and SgII-GLuc clones due to poor quality protein visualization. The colocalization of GLuc with the Golgi was analyzed by confocal microscopy and quantified. GLuc was strongly colocalized with the Golgi in the hPOMC-GLuc clone (r = 0.85±0.09), moderately in the VAMP2-GLuc clone (r = 0.65±0.01), and, as expected, only weakly in the no tag GLuc clone (r = 0.44±0.10). Confocal microscopy of differentiated MNs was used to analyze the colocalization of GLuc with proteins associated with LDCVs and SVs, SgII in the hPOMC-GLuc clone (r = 0.85±0.08) and synaptophysin in the VAMP2-GLuc clone (r = 0.65±0.07). GLuc was also expressed in the same cells as the MN-associated protein, Islet1. A significant portion of GLuc was found in the correct cell type and compartment. However, in the MoN-Light BoNT assay, the hPOMC-GLuc clone could not be provoked to reliably release GLuc upon cellular depolarization. The depolarization protocol for hPOMC-GLuc must be further optimized to produce reliable and specific release of GLuc upon exposure to a stimulus. On the other hand, the VAMP2-GLuc clone could be provoked to release GLuc upon exposure to the muscarinic and nicotinic agonist carbachol. Furthermore, upon simultaneous exposure to the calcium chelator EGTA, the carbachol-provoked release of GLuc could be significantly repressed, indicating the detection of GLuc was likely associated with vesicular fusion at the presynaptic terminal. The application of the VAMP2-GLuc clone in the MoN-Light BoNT assay must still be verified, but the results thus far indicate that this clone could be appropriate for the application of BoNT toxicity assessment. N2 - Botulinum neurotoxin (BoNT) wird von dem obligat anaeroben Bakterium Clostridium botulinum produziert. Es ist eines der giftigsten natürlich vorkommenden Toxine. Nach Aufnahme in den Körper dringt es in Motorneurone ein und spaltet spezifische Proteine, die für die Freisetzung des Neurotransmitters Acetylcholin notwendig sind. Dadurch kommt es zu einer schlaffen Lähmung der Muskulatur, die zu einer peripheren Asphyxie führt. Trotz seiner hohen Toxizität wird BoNT als Therapeutikum in der klassischen und kosmetischen Medizin genutzt. Da die Aktivität des biosynthetisch gewonnenen Toxins zwischen einzelnen Chargen trotz gleicher Proteinkonzentration stark variiert, muss die Aktivität jeder Präparation getestet werden. Dafür ist der Goldstandard der Mausletalitäts-Test, bei dem den Tieren unterschiedliche Dosen des Toxins injiziert werden und die Dosis ermittelt wird, bei der die Hälfte der Tiere verstirbt. Wegen der damit verbundenen ethischen Probleme wird nach Ersatzverfahren für diesen Tierversuch gesucht. Ein Ersatzverfahren muss folgende Bedingungen erfüllen: Es muss humanspezifisch sein; alle Teilschritte der BoNT-Wirkung messen; und eine hohe Empfindlichkeit haben, die in der gleichen Größenordnung wie der Maus-Letalitätstest liegt. Es wurde bereits ein Testsystem von unserer Gruppe entwickelt, bei dem humane SIMA-Neuroblastomzellen genetisch so modifiziert wurden, dass sie ein Reporterprotein (GLuc) exprimieren. Dieses wurde in neurosekretorische Vesikel verpackt und durch Depolarisation der Zellen gleichzeitig mit Neurotransmittern freigesetzt. Die Freisetzung wurde durch BoNT gehemmt. Obwohl dieser Assay großes Potential hat, wird seine Anwendbarkeit durch inhärente Nachteile eingeschränkt, da die GLuc-Sequenz zufällig in das Genom eingefügt wurde und die Tumorzellen nur eine begrenzte Sensitivität und Spezifität gegenüber BoNT haben. Diese Dissertation hatte zum Ziel, diese Defizite zu verbessern. Zu diesem Zweck wurden induzierte pluripotente Stammzellen (iPSCs) durch die CRISPR/Cas9-Methode genetisch modifiziert, um die GLuc-Sequenz in den genomischen Safe-Harbor-Lokus AAVS1 einzufügen, wodurch ausgeschlossen wird, dass durch unspezifische Integrationen ins Genom die Funktion anderer Gene gestört wird. Darüber hinaus wurde GLuc so modifiziert, dass sie mit Signalpeptiden versehen wurde, die sie zum Lumen sowohl von „Large Dense Core“ Vesikeln (LDCV), die Neuropeptide transportieren, als auch von synaptischen Vesikeln (SV), die Neurotransmitter verpacken, führen. Schließlich wurden die modifizierten iPSCs in Motorneurone (MNs) differenziert, der eigentlichen physiologischen Zielstruktur von BoNT, die mutmaßlich am empfindlichsten und spezifischsten auf BoNT reagieren und daher für den MoN-Light BoNT-Assay am geeignetsten sein sollten. iPSCs wurden transfiziert, um eines von drei Konstrukten zu integrieren. 1) ein Konstrukt, das GLuc in LDCVs leitet, 2) ein Konstrukt, das GLuc durch Fusion mit VAMP2 in SVs leitet und 3) ein "no tag" GLuc-Kontrollkonstrukt. Die LDCV-Konstrukte enthielten die Signalpeptide Proopiomelanocortin (hPOMC), Chromogranin-A (CgA) und Secretogranin II (SgII). Die VAMP2-GLuc-Fusion transportiert GLuc in SVs, so dass Neurotransmitter und GLuc gemeinsam und nicht, wie bei den anderen Konstrukten parallel, aus unterschiedlichen Vesikeln freigesetzt werden. Die "no tag GLuc"-Kontrolle wurde erstellt, um die Lokalisation von GLuc, die ohne Sortierungssignal in der Zelle exprimiert wird, mit der GLuc mit Sortierungssignalen für die unterschiedlichen Vesikel zu vergleichen. Die Klone wurden charakterisiert, um sicherzustellen, dass die GLuc-Sequenz ausschließlich in den AAVS1-Safe-Harbor-Lokus eingebaut wurde und dass die Signalpeptide GLuc zu den richtigen Vesikeln leiten. Die korrekte Insertion von GLuc wurde durch PCR mit Primern bestätigt, die den AAVS1-Lokus flankieren und in der Lage sind, gleichzeitig Wildtyp- und modifizierte Allele zu amplifizieren. Mögliche Integrationen außerhalb der Zielregion wurden mit der neu entwickelten dc-qcnPCR analysiert, wobei die Insert-DNA mittels qPCR gegen autosomal und geschlechts-chromosomal kodierte Gene quantifiziert wurde. Auch wenn die Mehrzahl der analysierten Klone Off-Target-Integrationen enthielt, konnte für jedes Konstrukt mindestens ein vollständig On-Target-homozygoter Klon identifiziert werden. Schließlich wurden die GLuc in ausgewählten Klonen durch Immunfluoreszenz lokalisiert. In iPSCs sollte die GLuc mit Sortierungssequenzen für Vesikel durch den Golgi-Apparat entlang des neurosekretorischen Weges wandern, während die „no tag“ GLuc diesem Weg nicht folgen sollte. Anfängliche Analysen schlossen die CgA-GLuc- und SgII-GLuc-Klone aufgrund der schlechten Qualität der Proteinvisualisierung aus. Die Kolokalisation von GLuc mit dem Golgi-Apparat wurde mittels konfokaler Mikroskopie analysiert und quantifiziert. GLuc war im hPOMC-GLuc-Klon sehr stark (r = 0,85±0,09), im VAMP2-GLuc-Klon mäßig (r = 0,65±0,01) und im no tag GLuc-Klon erwartungsgemäß nur schwach (r = 0,44±0,10) mit Golgi-Markern assoziiert. Nach der Differenzierung in MNs wurde die Koexpression von GLuc mit dem MN-assoziierten Protein Islet1 bestätigt. Konfokale Mikroskopie von MNs wurde angewandt, um die Kolokalisation von GLuc mit Proteinen zu quantifizieren, die mit LDCVs und SVs assoziiert sind, nämlich SgII mit der hPOMC-GLuc (r = 0,85±0,08) und Synaptophysin mit VAMP2-GLuc (r = 0,65±0,07). Ein signifikanter Anteil von GLuc wurde im richtigen Zelltyp und Kompartiment gefunden. Im MoN-Light BoNT-Assay wurde die GLuc jedoch nicht zuverlässig durch Depolarisation aus dem hPOMC-GLuc-Klon freigesetzt. Das für die SIMA-hPOMC-Gluc-Zellen entwickelte Depolarisationsprotokoll muss für hPOMC-GLuc weiter optimiert werden, um eine zuverlässige und spezifische Freisetzung von GLuc bei Exposition gegenüber einem Stimulus zu erreichen. Andererseits konnte die GLuc aus dem VAMP2-GLuc-Klon durch Stimulation mit dem muskarinischen und nikotinischen Agonisten Carbachol freigesetzt werden. Die Carbachol-abhängige Freisetzung der GLuc konnte mit dem Calcium-Chelator EGTA unterdrückt werden, was darauf hindeutet, dass die Freisetzung der GLuc wahrscheinlich von der Fusion synaptischer Vesikel am präsynaptischen Terminal abhängig ist. Die Anwendung des VAMP2-GLuc-Klons im MoN-Light BoNT-Assay muss noch verifiziert werden, aber die bisherigen Ergebnisse deuten darauf hin, dass dieser Klon für die Anwendung der BoNT-Toxizitätsbewertung geeignet sein könnte. KW - Induced pluripotent stem cells KW - Alternative to animal testing KW - Botulinum neurotoxin KW - Motor neurons KW - CRISPR/Cas9 KW - induzierte pluripotente Stammzellen KW - alternative zu Tierversuchen KW - Botulinumtoxine KW - Motorneurone KW - CRISPR/Cas9 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-516278 ER - TY - JOUR A1 - Baesler, Jessica A1 - Michaelis, Vivien A1 - Stiboller, Michael A1 - Haase, Hajo A1 - Aschner, Michael A1 - Schwerdtle, Tanja A1 - Sturzenbaum, Stephen R. A1 - Bornhorst, Julia T1 - Nutritive manganese and zinc overdosing in aging c. elegans result in a metallothionein-mediated alteration in metal homeostasis JF - Molecular Nutrition and Food Research N2 - Manganese (Mn) and zinc (Zn) are not only essential trace elements, but also potential exogenous risk factors for various diseases. Since the disturbed homeostasis of single metals can result in detrimental health effects, concerns have emerged regarding the consequences of excessive exposures to multiple metals, either via nutritional supplementation or parenteral nutrition. This study focuses on Mn-Zn-interactions in the nematode Caenorhabditis elegans (C. elegans) model, taking into account aspects related to aging and age-dependent neurodegeneration. KW - aging KW - C. elegans KW - homeostasis KW - manganese KW - zinc Y1 - 2021 U6 - https://doi.org/10.1002/mnfr.202001176 SN - 1613-4133 SN - 1613-4125 VL - 65 IS - 8 SP - 1 EP - 11 PB - Wiley-VCH GmbH CY - Weinheim ER - TY - THES A1 - Burkhardt, Wiebke T1 - Role of dietary sulfonates in the stimulation of gut bacteria promoting intestinal inflammation T1 - Die Rolle nahrungsrelevanter Sulfonate bei der Stimulation von entzündungsfördernden Darmbakterien N2 - The interplay between intestinal microbiota and host has increasingly been recognized as a major factor impacting health. Studies indicate that diet is the most influential determinant affecting the gut microbiota. A diet rich in saturated fat was shown to stimulate the growth of the colitogenic bacterium Bilophila wadsworthia by enhancing the secretion of the bile acid taurocholate (TC). The sulfonated taurine moiety of TC is utilized as a substrate by B. wadsworthia. The resulting overgrowth of B. wadsworthia was accompanied by an increased incidence and severity of colitis in interleukin (IL)-10-deficient mice, which are genetically prone to develop inflammation. Based on these findings, the question arose whether the intake of dietary sulfonates also stimulates the growth of B. wadsworthia and thereby promotes intestinal inflammation in genetically susceptible mice. Dietary sources of sulfonates include green vegetables and cyanobacteria, which contain the sulfolipids sulfoquinovosyl diacylglycerols (SQDG) in considerable amounts. Based on literature reports, the gut commensal Escherichia coli is able to release sulfoquinovose (SQ) from SQDG and in further steps, convert SQ to 2,3-dihydroxypropane-1-sulfonate (DHPS) and dihydroxyacetone phosphate. DHPS may then be utilized as a growth substrate by B. wadsworthia, which results in the formation of sulfide. Both, sulfide formation and a high abundance of B. wadsworthia have been associated with intestinal inflammation. In the present study, conventional IL-10-deficient mice were fed either a diet supplemented with the SQDG-rich cyanobacterium Spirulina (20%, SD) or a control diet. In addition SQ, TC, or water were orally applied to conventional or gnotobiotic IL-10-deficient mice. The gnotobiotic mice harbored a simplified human intestinal microbiota (SIHUMI) either with or without B. wadsworthia. During the intervention period, the body weight of the mice was monitored, the colon permeability was assessed and fecal samples were collected. After the three-week intervention, the animals were examined with regard to inflammatory parameters, microbiota composition and sulfonate concentrations in different intestinal sites. None of the mice treated with the above-mentioned sulfonates showed weight loss or intestinal inflammation. Solely mice fed SD or gavaged with TC displayed a slight immune response. These mice also displayed an altered microbiota composition, which was not observed in mice gavaged with SQ. The abundance of B. wadsworthia was strongly reduced in mice fed SD, while that of mice treated with SQ or TC was in part slightly increased. The intestinal SQ-concentration was elevated in mice orally treated with SD or SQ, whereas neither TC nor taurine concentrations were consistently elevated in mice gavaged with TC. Additional colonization of SIHUMI mice with B. wadsworthia resulted in a mild inflammatory response, but only in mice treated with TC. In general, TC-mediated effects on the immune system and abundance of B. wadsworthia were not as strong as described in the literature. In summary, neither the tested dietary sulfonates nor TC led to bacteria-induced intestinal inflammation in the IL-10-deficient mouse model, which was consistently observed in both conventional and gnotobiotic mice. For humans, this means that foods containing SQDG, such as spinach or Spirulina, do not increase the risk of intestinal inflammation. N2 - Die mikrobielle Lebensgemeinschaft im Darm des Menschen, die intestinale Mikrobiota, übt einen beträchtlichen Einfluss auf die Gesundheit des Wirts aus. Der Wirt wiederum beeinflusst die intestinale Mikrobiota durch seine Ernährung. Bei Mäusen wurde beobachtet, dass eine Ernährung reich an gesättigten Fettsäuren zu Darmentzündung führen kann, wenn die Tiere Interleukin (IL)-10-defizient sind, was sie empfänglich für Entzündungen macht. Durch die fettreiche Ernährung wurde vermehrt die sulfonierte Gallensäure Taurocholat (TC) sekretiert, welche wiederum das Wachstum des entzündungsfördernden Bakteriums Bilophila wadsworthia stimulierte. Aufgrund dieser Beobachtung stellte sich die Frage, ob auch nahrungsrelevante Sulfonate bei IL-10-defizienten Mäusen zu einer bakteriell induzierten Darmentzündung führen können. Bei den in dieser Arbeit untersuchten Sulfonaten handelt es sich um die Sulfolipide Sulfoquinovosyldiacylglycerole (SQDG), welche in den meisten photosynthetischen Organismen wie Pflanzen, Moosen und Cyanobakterien vorkommen. Aus der Literatur ist bekannt, dass SQDG durch das kommensale Darmbakterium Escherichia coli zu Sulfoquinovose (SQ) und in weiteren Schritten zu 2,3-Dihydroxypropan-1-sulfonat (DHPS) und Dihydroxyacetonphosphat gespalten werden kann. DHPS kann von B. wadsworthia wiederum als Wachstumssubstrat verwendet und zu Sulfid reduziert werden. Sowohl für B. wadsworthia als auch für Sulfid wird angenommen, dass sie zur Entstehung von Darmentzündungen beitragen. Um diese Hypothese zu untersuchen, wurden konventionelle IL-10-defiziente Mäuse für drei Wochen mit einem Futter gefüttert, welches das SQDG-reiche Cyanobakterium Spirulina (20%, SD) enthielt. Weiterhin wurde IL-10-defizienten Mäusen mit einer komplexen oder minimalen intestinalen Mikrobiota für drei Wochen SQ oder TC oral verabreicht. Die Tiere mit der minimalen Mikrobiota waren mit einer simplifizierten humanen intestinalen Mikrobiota (SIHUMI) mit oder ohne B. wadsworthia besiedelt. Während der Versuche wurden die Tiere gewogen, Fäzesproben wurden gesammelt und ein Darm-Permeabilitätstest wurde durchgeführt. Nach der dreiwöchigen Intervention wurden Entzündungsparameter, Mikrobiotazusammensetzung und Sulfonatkonzentrationen in den einzelnen Darmabschnitten der Mäuse untersucht. Die Ergebnisse dieser Untersuchungen zeigten, dass keines der getesteten Sulfonate zu Gewichtsverlust oder Darmentzündung führte. Lediglich die Mäuse, die mit SD gefüttert oder denen TC appliziert wurde, zeigten Anzeichen einer schwachen Immunantwort. Auch wiesen diese Mäuse Veränderungen in der Zusammensetzung der Darmmikrobiota auf, was bei den mit SQ behandelten Mäusen nicht der Fall war. Die Zellzahl von B. wadsworthia war in SD-gefütterten Mäusen deutlich reduziert, während die Zellzahl dieses Bakteriums in den Mäuse, die mit SQ oder TC behandelt wurden, nur teilweise leicht erhöht war. Die SQ-Konzentrationen in den Inhalten einzelner Darmabschnitte waren bei den mit SD oder SQ behandelten Mäusen erhöht. Die Taurin- und TC-Konzentrationen glichen bei mit TC behandelten Mäusen überwiegend denen der Kontrolltiere. Die zusätzliche Besiedlung der SIHUMI-Mäuse mit B. wadsworthia führte nur in Tieren, denen TC appliziert wurde, zu leicht erhöhten Entzündungswerten. Allgemein übte die orale Applikation von TC weniger starke Effekte auf das Entzündungsgeschehen und die Mikrobiotazusammensetzung der Mäuse aus als in der Literatur beschrieben. Die Ergebnisse dieser Studie legen nahe, dass weder das SQDG-reiche Futter noch die orale Applikation von SQ oder TC zu einer bakteriell induzierten Darmentzündung bei IL-10-defizienten Mäusen führt. Für den Menschen bedeutet dies, dass SQDG-haltige Lebensmittel wie Spinat oder Spirulina das Risiko für Darmentzündungen nicht erhöhen. KW - Bilophila wadsworthia KW - Dietary sulfonates KW - Inflammatory bowel disease KW - Bilophila wadsworthia KW - Nahrungssulfonate KW - chronisch-entzündliche Darmerkrankungen Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-513685 ER - TY - THES A1 - Baeseler, Jessica T1 - Trace element effects on longevity and neurodegeneration with focus on C. elegans T1 - Effekte von Spurenelementen auf die Lebensdauer und Neurodegeneration mit Fokus auf C. elegans N2 - The trace elements zinc and manganese are essential for human health, especially due to their enzymatic and protein stabilizing functions. If these elements are ingested in amounts exceeding the requirements, regulatory processes for maintaining their physiological concentrations (homeostasis) can be disturbed. Those homeostatic dysregulations can cause severe health effects including the emergence of neurodegenerative disorders such as Parkinson’s disease (PD). The concentrations of essential trace elements also change during the aging process. However, the relations of cause and consequence between increased manganese and zinc uptake and its influence on the aging process and the emergence of the aging-associated PD are still rarely understood. This doctoral thesis therefore aimed to investigate the influence of a nutritive zinc and/or manganese oversupply on the metal homeostasis during the aging process. For that, the model organism Caenorhabditis elegans (C. elegans) was applied. This nematode suits well as an aging and PD model due to properties such as its short life cycle and its completely sequenced, genetically amenable genome. Different protocols for the propagation of zinc- and/or manganese-supplemented young, middle-aged and aged C. elegans were established. Therefore, wildtypes, as well as genetically modified worm strains modeling inheritable forms of parkinsonism were applied. To identify homeostatic and neurological alterations, the nematodes were investigated with different methods including the analysis of total metal contents via inductively-coupled plasma tandem mass spectrometry, a specific probe-based method for quantifying labile zinc, survival assays, gene expression analysis as well as fluorescence microscopy for the identification and quantification of dopaminergic neurodegeneration.. During aging, the levels of iron, as well as zinc and manganese increased.. Furthermore, the simultaneous oversupply with zinc and manganese increased the total zinc and manganese contents to a higher extend than the single metal supplementation. In this relation the C. elegans metallothionein 1 (MTL-1) was identified as an important regulator of metal homeostasis. The total zinc content and the concentration of labile zinc were age-dependently, but differently regulated. This elucidates the importance of distinguishing these parameters as two independent biomarkers for the zinc status. Not the metal oversupply, but aging increased the levels of dopaminergic neurodegeneration. Additionally, nearly all these results yielded differences in the aging-dependent regulation of trace element homeostasis between wildtypes and PD models. This confirms that an increased zinc and manganese intake can influence the aging process as well as parkinsonism by altering homeostasis although the underlying mechanisms need to be clarified in further studies. N2 - Die Spurenelemente Zink und Mangan sind vor allem aufgrund ihrer enzymatischen und Protein-stabilisierenden Funktionen essentiell für die menschliche Gesundheit. Werden sie allerdings in Mengen aufgenommen, die den Bedarf übersteigen, können regulatorische Prozesse für die Aufrechterhaltung physiologischer Konzentrationen dieser Metalle (Homöostase) aus dem Gleichgewicht geraten. Das kann ernsthafte gesundheitliche Konsequenzen nach sich ziehen, unter anderem die Entstehung neurodegenerativer Krankheiten, wie zum Beispiel der Parkinson’schen Erkrankung. Auch während des Alterungsprozesses verändern sich die Gehalte an lebensnotwendigen Spurenelementen im Körper. Jedoch sind die Zusammenhänge zwischen Ursache und Wirkung einer erhöhten Aufnahme an Zink und Mangan und deren Einfluss auf den Alterungsprozess und die Entstehung der altersassoziierten Parkinson’schen Erkrankung bisher nur unzureichend verstanden. Im Rahmen dieser Doktorarbeit wurde deshalb der Einfluss einer nutritiven Zink- und/oder Manganüberversorgung auf die Metallhomöostase während der Alterung untersucht. Dazu wurde Caenorhabditis elegans (C. elegans) als Modellorganismus verwendet. Diese Fadenwürmer eignen sich aufgrund verschiedener Eigenschaften, wie einem kurzen Lebenszyklus und einem komplett sequenzierten und leicht manipulierbarem Genom, hervorragend als Alters- und Parkinson-Modelle. Es wurden verschiedene Protokolle etabliert, die die Anzucht von Zink- und/oder Mangan-supplementierten jungen, mittelalten bzw. gealterten C. elegans erlaubten. Neben Wildtypen wurden auch Wurmstämme untersucht, die genetische Modifikationen aufweisen, die mit vererbbaren Formen des Parkinsonismus assoziiert werden können. Die Würmer wurden mithilfe verschiedener Methoden, wie der analytischen Bestimmung des Gesamtmetallgehaltes mittels Massenspektrometrie mit induktiv-gekoppeltem Plasma, einer Sonden-spezifischen Methode zur Bestimmung von freiem Zink, Letalitätsassays, Genexpressionsanalysen und der Fluoreszenz-mikroskopischen Untersuchung der dopaminergen Neurodegeneration auf verschiedene Parameter untersucht, die Aufschluss über homöostatische und neurologische Veränderungen geben. Es wurde eine altersbedingte Zunahme von Eisen, sowie Zink und Mangan in den Würmern beobachtet. Weiterhin stellte sich heraus, dass vor allem die simultane Überversorgung mit Zink und Mangan den Gesamtmetallgehalt dieser Metalle in C. elegans in einem Maß steigerte, das das der Einzelmetallsupplementierung überstieg. Dabei konnte vor allem das C. elegans Metallothionein 1 (MTL-1) als wichtiger Faktor in der Regulation der Metallhomöostase identifiziert werden. Außerdem wurde die Wichtigkeit verdeutlicht, zwischen dem Gesamtzinkgehalt und der Konzentration an freiem Zink als Biomarkern für den Zinkstatus eines Organismus zu unterscheiden. Beide Parameter wurden altersabhängig unterschiedlich reguliert. Im Gegensatz zur Alterung, wurde durch die Überversorgung mit Metallen keine zusätzliche Schädigung der dopaminergen Neuronen beobachtet. In nahezu all diesen Ergebnissen verdeutlichten sich weiterhin Unterschiede in der altersabhängigen Regulation der Spurenelementhomöostase zwischen Wildtypen und Parkinson-Modellen. Dies bestätigt die Annahme, dass sich eine erhöhte Aufnahme von Mangan und Zink durch die Beeinflussung der Homöostase sowohl auf die Alterung, als auch den Parkinsonismus auswirken kann, jedoch müssen die mechanistischen Grundlagen dessen in zukünftigen Studien aufgeklärt werden. KW - Caenorhabditis elegans KW - aging KW - trace element KW - zinc KW - manganese KW - Caenorhabditis elegans KW - Alterung KW - Spurenelement KW - Zink KW - Mangan Y1 - 2021 ER - TY - JOUR A1 - Rausch, Ann-Kristin A1 - Brockmeyer, Robert A1 - Schwerdtle, Tanja T1 - Development, validation, and application of a multi-method for the determination of mycotoxins, plant growth regulators, tropane alkaloids, and pesticides in cereals by two-dimensional liquid chromatography tandem mass spectrometry JF - Analytical & bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica N2 - Mycotoxins and pesticides regularly co-occur in agricultural products worldwide. Thus, humans can be exposed to both toxic contaminants and pesticides simultaneously, and multi-methods assessing the occurrence of various food contaminants and residues in a single method are necessary. A two-dimensional high performance liquid chromatography tandem mass spectrometry method for the analysis of 40 (modified) mycotoxins, two plant growth regulators, two tropane alkaloids, and 334 pesticides in cereals was developed. After an acetonitrile/water/formic acid (79:20:1, v/v/v) multi-analyte extraction procedure, extracts were injected into the two-dimensional setup, and an online clean-up was performed. The method was validated according to Commission Decision (EC) no. 657/2002 and document N° SANTE/12682/2019. Good linearity (R2 > 0.96), recovery data between 70-120%, repeatability and reproducibility values < 20%, and expanded measurement uncertainties < 50% were obtained for a wide range of analytes, including very polar substances like deoxynivalenol-3-glucoside and methamidophos. However, results for fumonisins, zearalenone-14,16-disulfate, acid-labile pesticides, and carbamates were unsatisfying. Limits of quantification meeting maximum (residue) limits were achieved for most analytes. Matrix effects varied highly (−85 to +1574%) and were mainly observed for analytes eluting in the first dimension and early-eluting analytes in the second dimension. The application of the method demonstrated the co-occurrence of different types of cereals with 28 toxins and pesticides. Overall, 86% of the samples showed positive findings with at least one mycotoxin, plant growth regulator, or pesticide. KW - 2D-LC-MS/MS KW - Multi-method KW - Mycotoxins KW - Modified mycotoxins KW - Pesticides KW - Cereals Y1 - 2021 U6 - https://doi.org/10.1007/s00216-021-03239-1 SN - 1618-2650 SN - 1618-2642 VL - 413 IS - 11 SP - 3041 EP - 3054 PB - Springer CY - Berlin ER - TY - JOUR A1 - Rausch, Ann-Kristin A1 - Brockmeyer, Robert A1 - Schwerdtle, Tanja T1 - Development and validation of a liquid chromatography tandem mass spectrometry multi-method for the determination of 41 free and modified mycotoxins in beer JF - Food chemistry N2 - A fast high performance liquid chromatography tandem mass spectrometry multi-method based on an ACN-precipitation extraction was developed for the analysis of 41 (modified) mycotoxins in beer. Validation according to the performance criteria defined by the European Commission (EC) in Commission Decision no. 657/2002 revealed good linearity (R2 > 0.99), repeatability (RSDr < 15%), reproducibility (RSDR < 15%), and recovery (79–100%). Limits of quantification ranging from 0.04 to 75 µg/L were obtained. Matrix effects varied from −67 to +319% and were compensated for using standard addition. In total, 87 beer samples, produced worldwide, were analyzed for the presence of mycotoxins with a focus on modified mycotoxins, whereof 76% of the samples were contaminated with at least one mycotoxin. The most prevalent mycotoxins were deoxynivalenol-3-glucoside (63%), HT-2 toxin (15%), and tenuazonic acid (13%). Exposure estimates of deoxynivalenol and its metabolites for German beer revealed no significant contribution to intake of deoxynivalenol. KW - Multi-mycotoxin analysis KW - Modified mycotoxins KW - LC–MS/MS KW - Beer KW - Validation Y1 - 2020 U6 - https://doi.org/10.1016/j.foodchem.2020.127801 SN - 1873-7072 SN - 0308-8146 VL - 338 PB - Elsevier CY - New York, NY ER - TY - THES A1 - Mancini, Carola T1 - Analysis of the effects of age-related changes of metabolic flux on brown adipocyte formation and function N2 - Brown adipose tissue (BAT) is responsible for non-shivering thermogenesis, thereby allowing mammals to maintain a constant body temperature in a cold environment. Thermogenic capacity of this tissue is due to a high mitochondrial density and expression of uncoupling protein 1 (UCP1), a unique brown adipocyte marker which dissipates the mitochondrial proton gradient to produce heat instead of ATP. BAT is actively involved in whole-body metabolic homeostasis and during aging there is a loss of classical brown adipose tissue with concomitantly reduced browning capacity of white adipose tissue. Therefore, an age-dependent decrease of BAT-related energy expenditure capacity may exacerbate the development of metabolic diseases, including obesity and type 2 diabetes mellitus. Given that direct effects of age-related changes of BAT-metabolic flux have yet to be unraveled, the aim of the current thesis is to investigate potential metabolic mechanisms involved in BAT-dysfunction during aging and to identify suitable metabolic candidates as functional biomarkers of BAT-aging. To this aim, integration of transcriptomic, metabolomic and proteomic data analyses of BAT from young and aged mice was performed, and a group of candidates with age-related changes was revealed. Metabolomic analysis showed age-dependent alterations of metabolic intermediates involved in energy, nucleotide and vitamin metabolism, with major alterations regarding the purine nucleotide pool. These data suggest a potential role of nucleotide intermediates in age-related BAT defects. In addition, the screening of transcriptomic and proteomic data sets from BAT of young and aged mice allowed identification of a 60-kDa lysophospholipase, also known as L-asparaginase (Aspg), whose expression declines during BAT-aging. Involvement of Aspg in brown adipocyte thermogenic function was subsequently analyzed at the molecular level using in vitro approaches and animal models. The findings revealed sensitivity of Aspg expression to β3-adrenergic activation via different metabolic cues, including cold exposure and treatment with β3-adrenergic agonist CL. To further examine ASPG function in BAT, an over-expression model of Aspg in a brown adipocyte cell line was established and showed that these cells were metabolically more active compared to controls, revealing increased expression of the main brown-adipocyte specific marker UCP1, as well as higher lipolysis rates. An in vitro loss-of-function model of Aspg was also functionally analyzed, revealing reduced brown adipogenic characteristics and an impaired lipolysis, thus confirming physiological relevance of Aspg in brown adipocyte function. Characterization of a transgenic mouse model with whole-body inactivation of the Aspg gene (Aspg-KO) allowed investigation of the role of ASPG under in vivo conditions, indicating a mild obesogenic phenotype, hypertrophic white adipocytes, impairment of the early thermogenic response upon cold-stimulation and dysfunctional insulin sensitivity. Taken together, these data show that ASPG may represent a new functional biomarker of BAT-aging that regulates thermogenesis and therefore a potential target for the treatment of age-related metabolic disease. KW - adipose tissue KW - aging KW - nutrients KW - metabolism KW - Fettgewebe KW - Alterung KW - Stoffwechsel KW - Nährstoffe Y1 - 2021 U6 - https://doi.org/10.25932/publishup-51266 ER - TY - THES A1 - Rausch, Ann-Kristin T1 - Development of LC-MS/MS Multi-Methods for the Analysis of Contaminants and Residues N2 - Mycotoxins are secondary metabolites produced by several filamentous fungal species, thus occurring ubiquitously in the environment and food. While the heterogeneous group shows differences in their bioavailability and toxicity, the low-molecular-weight xenobiotics are capable of impacting human and animal health acutely and chronically. Therefore, maximum levels for the major mycotoxins in food and feed are regulated in the current European legislation. Besides free mycotoxins, naturally occurring modified mycotoxins are gaining more attention in recent years. Modified mycotoxins constitute toxins altered by plants, microorganisms, and living organisms in different metabolic pathways or food processing steps. The toxicological relevant compounds often co-occur with their free forms in infested food and feed. Thus, the toxins may contribute to the overall toxicity of mycotoxins, wherefore their presence and toxicity should be considered in risk assessment. Until now, however, there are no regulated limits for modified mycotoxins within the European Union. In this thesis, rapid, sensitive, and robust methods for the analysis of mycotoxins and their modified forms were developed and validated using state-of-the-art high performance liquid chromatography tandem mass spectrometry (LC-MS/MS) systems. Firstly, two analytical methods for determining 38 mycotoxins in cereals and 41 mycotoxins in beer were established since agricultural products count as the primary source of mycotoxin contamination. For the analysis of cereal samples, a QuEChERS- based extraction approach was pursued, while analytes from beer samples were extracted using an acetonitrile precipitation scheme. Validation in cereals, namely wheat, corn, rice, and barley, as well as in beer, demonstrated satisfactory results. To obtain information regarding the natural occurrence of mycotoxins in food products, the developed methods were applied to the analysis of several commercial samples partly produced worldwide. The Fusarium toxins deoxynivalenol and its conjugated metabolite deoxynivalenol-3-glucoside turned out to be the most abundant toxins. None of the other modified mycotoxins were quantified in the samples. However, one cereal sample showed traces of zearalenone- 14-sulfate below the limit of quantification. Moreover, pesticides, plant growth regulators, and tropane alkaloids were investigated in this thesis. Pesticides present biologically highly effective compounds applied in the environment to protect humans from the hazardous effects of pests. While plant growth regulators show similar functions, mainly improving agricultural production, tropane alkaloids are naturally occurring secondary metabolites mainly in the species of Solanaceae that may pose unintended poisoning of humans. The third part of the present thesis aimed to analyze cereal-relevant compounds simultaneously, wherefore a multi-method for the analysis of (modified) mycotoxins, pesticides, plant growth regulators, and tropane alkaloids was established. After processing the samples, this should be done in a single extraction step with subsequent one-time measurements. Various sample preparation procedures were compared, whereby an approach based on an acidified acetonitrile/water extraction, followed by an online clean-up, was finally chosen. The simultaneous determination of more than 350 analytes required an analytical tool that offered an increased resolving power, represented as an enhanced peak capacity, and the possibility of analyzing a broad polarity range. Thus, a two-dimensional LC-MS/MS system based on two different separation mechanisms that performed orthogonal to one another was used for the analysis. Validation of the developed method revealed good performance characteristics for most analytes, while subsequent application showed that 86% of the samples were contaminated with at least one compound. In summary, this thesis provides novel insights into the analysis of food-relevant (modified) mycotoxins. Different sample preparation and LC-MS/MS approaches were introduced, resulting in the development of three new analytical methods. For the first time, such a high number of modified mycotoxins was included in multi-mycotoxin methods and a multi-method ranging both contaminants and residues. Although first steps towards the analysis of modified mycotoxins have been made, further research is needed to elucidate their (co-) occurrence and toxicological behavior in order to understand their relevance to human health in the future. KW - Mycotoxins KW - LC-MS/MS KW - Multi-Methods KW - Cereals KW - Beer Y1 - 2021 ER - TY - THES A1 - Hauffe, Robert T1 - Investigating metabolic consequences of an HSP60 reduction during diet-induced obesity T1 - Metabolische Folgen einer HSP60 Reduktion während des Diät-induzierten Übergewichts N2 - The mitochondrial chaperone complex HSP60/HSP10 facilitates mitochondrial protein homeostasis by folding more than 300 mitochondrial matrix proteins. It has been shown previously that HSP60 is downregulated in brains of type 2 diabetic (T2D) mice and patients, causing mitochondrial dysfunction and insulin resistance. As HSP60 is also decreased in peripheral tissues in T2D animals, this thesis investigated the effect of overall reduced HSP60 in the development of obesity and associated co-morbidities. To this end, both female and male C57Bl/6N control (i.e. without further alterations in their genome, Ctrl) and heterozygous whole-body Hsp60 knock-out (Hsp60+/-) mice, which exhibit a 50 % reduction of HSP60 in all tissues, were fed a normal chow diet (NCD) or a highfat diet (HFD, 60 % calories from fat) for 16 weeks and were subjected to extensive metabolic phenotyping including indirect calorimetry, NMR spectroscopy, insulin, glucose and pyruvate tolerance tests, vena cava insulin injections, as well as histological and molecular analysis. Interestingly, NCD feeding did not result in any striking phenotype, only a mild increase in energy expenditure in Hsp60+/- mice. Exposing mice to a HFD however revealed an increased body weight due to higher muscle mass in female Hsp60+/- mice, with a simultaneous decrease in energy expenditure. Additionally, these mice displayed decreased fasting glycemia. Opposingly, male Hsp60+/- compared to control mice showed lower body weight gain due to decreased fat mass and an increased energy expenditure, strikingly independent of lean mass. Further, only male Hsp60+/- mice display improved HOMA-IR and Matsuda insulin sensitivity indices. Despite the opposite phenotype in regards to body weight development, Hsp60+/- mice of both sexes show a significantly higher cell number, as well as a reduction in adipocyte size in the subcutaneous and gonadal white adipose tissue (sc/gWAT). Curiously, this adipocyte hyperplasia – usually associated with positive aspects of WAT function – is disconnected from metabolic improvements, as the gWAT of male Hsp60+/- mice shows mitochondrial dysfunction, oxidative stress, and insulin resistance. Transcriptomic analysis of gWAT shows an up regulation of genes involved in macroautophagy. Confirmatory, expression of microtubuleassociated protein 1A/1B light chain 3B (LC3), as a protein marker of autophagy, and direct measurement of lysosomal activity is increased in the gWAT of male Hsp60+/- mice. In summary, this thesis revealed a novel gene-nutrient interaction. The reduction of the crucial chaperone HSP60 did not have large effects in mice fed a NCD, but impacted metabolism during DIO in a sex-specific manner, where, despite opposing body weight and body composition phenotypes, both female and male Hsp60+/- mice show signs of protection from high fat diet-induced systemic insulin resistance. N2 - Der mitochondriale Chaperonkomplex HSP60/10 ist für die korrekte Faltung von über 300 mitochondrialen Matrixproteinen verantwortlich. Es wurde bereits gezeigt, dass HSP60 in Gehirnen von Patienten sowie Mäusen mit Typ 2 Diabetes (T2D) reduziert ist, was zu mitochondrialer Dysfunktion und Insulinresistenz führt. HSP60 ist darüber hinaus auch in peripheren Organen von T2D Mäusen reduziert. Die hier vorliegende Arbeit hat daher den Einfluss einer generellen Reduktion von HSP60 auf die Entwicklung von Übergewicht und die damit assoziierten Komorbiditäten untersucht. Hierfür wurden weibliche und männliche C57Bl/6N Kontroll Mäuse (d.h. ohne wietere Veränderung ihres Genoms, Ctrl), sowie C57Bl/6N Mäuse mit einer heterozygoten Deletion von HSP60 (Hsp60+/-) genutzt. Die Hsp60+/- Maus zeigt eine 50 % Reduktion von HSP60 in allen Geweben. Allen Tieren wurde in der Folge entweder eine normale Haltungsdiät (NCD) oder eine 60 % Hochfettdiät (HFD) gefüttert und einer intensiven metabolischen Charakterisierung unterzogen. Dies beinhaltete indirekte Kalorimetrie, NMR Spektroskopie, Insulin, Glukose und Pyruvat Toleranztests, direkte vena cava Insulinapplikation, sowie eingehende histologische und molekulare Untersuchungen. Interessanterweise zeigte die Fütterung mit der NCD keine stark ausgeprägten Phänotypen, lediglich ein leichter Anstieg im Energieverbrauch war zu beobachten. Die Fütterung mit der HFD dagegen führte auf Grund von größerer Muskelmasse zu einem erhöhten Körpergewicht in weiblichen Hsp60+/- Mäusen, was mit gleichzeitig verringertem Energieverbrauch einherging. Zusätzlich war bei diesen Mäusen der gefastete Bluzuckerspiegel verringert. Im Gegensatz dazu zeigten männliche Hsp60+/- Mäuse ein verringertes Körpergewicht, bedingt durch eine geringere Fettmasse sowie erhöhtem Energieverbrauch. Darüber hinaus war bei männlichen Hsp60+/- Mäusen eine Verbesserung der Insulin Sensitivitätsindizes HOMA-IR und Matsuda Index zu verzeichnen. Trotz dieses gegenteiligen Phänotyps zeigten beide Geschlechter eine erhöhte Zellzahl, sowie eine verringerte Zellgröße der Adipozyten im subkutanen und gonadalen weißen Fettgewebe (sc/gWAT (engl: white adipose tissue)). Überraschenderweise ist diese Adipozytenhyperplasie – normalerweise assoziiert mit verbesserter Fettgewebsfunktion – losgelöst von verbesserter WAT Funktion, da das gWAT männlicher Hsp60+/- Mäuse mitochondriale Dysfunktion, oxidativen Stress und Insulinresistenz zeigt. Eine folgende Transkriptomanalyse gab Hinweise auf eine Induktion der Makroautophagie. Bestätigend hierfür ist im gWAT der heterozygoten Mäuse die Expression des Autophagie Markers microtubule-associated protein 1A/1B light chain 3B (LC3), sowie die direkt gemessene lysosomale Aktivität erhöht. Zusammenfassend konnte in dieser Arbeit eine neuartige Gen-Nährstoff Interaktion gezeigt werden. So zeigte die Reduktion des wichtigen Chaperons HSP60 unter NCD Fütterung nur schwache Effekte, während unter Hochfettdiätfütterung der Stoffwechsel geschlechtsspezifisch beinflusst wurde. Obwohl die beiden Geschlechter der Hsp60+/- Mäuse gegenteilige Phänotypen im Bezug auf Körpergewicht und Körperzusammensetzung aufwiesen, zeigen beide Anzeichen eines Schutzes vor Hochfettdiät-induzierter Insulinresistenz. KW - Obesity KW - Adipose tissue KW - Insulin resistance KW - Mitochondria KW - Fettgewebe KW - Insulinresistenz KW - Mitochondrien KW - Adipositas Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-509294 ER - TY - GEN A1 - Pathe-Neuschäfer-Rube, Andrea A1 - Neuschäfer-Rube, Frank A1 - Püschel, Gerhard Paul T1 - Cell-based reporter release assay to determine the activity of calcium-dependent neurotoxins and neuroactive pharmaceuticals T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The suitability of a newly developed cell-based functional assay was tested for the detection of the activity of a range of neurotoxins and neuroactive pharmaceuticals which act by stimulation or inhibition of calcium-dependent neurotransmitter release. In this functional assay, a reporter enzyme is released concomitantly with the neurotransmitter from neurosecretory vesicles. The current study showed that the release of a luciferase from a differentiated human neuroblastoma-based reporter cell line (SIMA-hPOMC1-26-GLuc cells) can be stimulated by a carbachol-mediated activation of the Gq-coupled muscarinic-acetylcholine receptor and by the Ca2+-channel forming spider toxin α-latrotoxin. Carbachol-stimulated luciferase release was completely inhibited by the muscarinic acetylcholine receptor antagonist atropine and α-latrotoxin-mediated release by the Ca2+-chelator EGTA, demonstrating the specificity of luciferase-release stimulation. SIMA-hPOMC1-26-GLuc cells express mainly L- and N-type and to a lesser extent T-type VGCC on the mRNA and protein level. In accordance with the expression profile a depolarization-stimulated luciferase release by a high K+-buffer was effectively and dose-dependently inhibited by L-type VGCC inhibitors and to a lesser extent by N-type and T-type inhibitors. P/Q- and R-type inhibitors did not affect the K+-stimulated luciferase release. In summary, the newly established cell-based assay may represent a versatile tool to analyze the biological efficiency of a range of neurotoxins and neuroactive pharmaceuticals which mediate their activity by the modulation of calcium-dependent neurotransmitter release. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1139 KW - cell-based assay KW - neurotoxins KW - muscarinic acetylcholine receptor KW - voltage-dependent calcium channels KW - VGCC Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-503225 SN - 1866-8372 IS - 1139 ER - TY - JOUR A1 - Pathe-Neuschäfer-Rube, Andrea A1 - Neuschäfer-Rube, Frank A1 - Püschel, Gerhard Paul T1 - Cell-based reporter release assay to determine the activity of calcium-dependent neurotoxins and neuroactive pharmaceuticals JF - Toxins / Molecular Diversity Preservation International (MDPI) N2 - The suitability of a newly developed cell-based functional assay was tested for the detection of the activity of a range of neurotoxins and neuroactive pharmaceuticals which act by stimulation or inhibition of calcium-dependent neurotransmitter release. In this functional assay, a reporter enzyme is released concomitantly with the neurotransmitter from neurosecretory vesicles. The current study showed that the release of a luciferase from a differentiated human neuroblastoma-based reporter cell line (SIMA-hPOMC1-26-GLuc cells) can be stimulated by a carbachol-mediated activation of the Gq-coupled muscarinic-acetylcholine receptor and by the Ca2+-channel forming spider toxin α-latrotoxin. Carbachol-stimulated luciferase release was completely inhibited by the muscarinic acetylcholine receptor antagonist atropine and α-latrotoxin-mediated release by the Ca2+-chelator EGTA, demonstrating the specificity of luciferase-release stimulation. SIMA-hPOMC1-26-GLuc cells express mainly L- and N-type and to a lesser extent T-type VGCC on the mRNA and protein level. In accordance with the expression profile a depolarization-stimulated luciferase release by a high K+-buffer was effectively and dose-dependently inhibited by L-type VGCC inhibitors and to a lesser extent by N-type and T-type inhibitors. P/Q- and R-type inhibitors did not affect the K+-stimulated luciferase release. In summary, the newly established cell-based assay may represent a versatile tool to analyze the biological efficiency of a range of neurotoxins and neuroactive pharmaceuticals which mediate their activity by the modulation of calcium-dependent neurotransmitter release. KW - cell-based assay KW - neurotoxins KW - muscarinic acetylcholine receptor KW - voltage-dependent calcium channels KW - VGCC Y1 - 2021 U6 - https://doi.org/10.3390/toxins13040247 SN - 2072-6651 VL - 13 IS - 4 PB - MDPI CY - Basel ER - TY - THES A1 - Laeger, Thomas T1 - Protein-dependent regulation of feeding, metabolism, and development of type 2 diabetes T1 - Proteinabhängige Regulation der Nahrungsaufnahme und des Metabolismus sowie Entstehung des Typ-2-Diabetes BT - FGF21’s biological role BT - die Rolle von FGF21 N2 - Food intake is driven by the need for energy but also by the demand for essential nutrients such as protein. Whereas it was well known how diets high in protein mediate satiety, it remained unclear how diets low in protein induce appetite. Therefore, this thesis aims to contribute to the research area of the detection of restricted dietary protein and adaptive responses. This thesis provides clear evidence that the liver-derived hormone fibroblast growth factor 21 (FGF21) is an endocrine signal of a dietary protein restriction, with the cellular amino acid sensor general control nonderepressible 2 (GCN2) kinase acting as an upstream regulator of FGF21 during protein restriction. In the brain, FGF21 is mediating the protein-restricted metabolic responses, e.g. increased energy expenditure, food intake, insulin sensitivity, and improved glucose homeostasis. Furthermore, endogenous FGF21 induced by dietary protein or methionine restriction is preventing the onset of type 2 diabetes in the New Zealand Obese mouse. Overall, FGF21 plays an important role in the detection of protein restriction and macronutrient imbalance in rodents and humans, and mediates both the behavioral and metabolic responses to dietary protein restriction. This makes FGF21 a critical physiological signal of dietary protein restriction, highlighting the important but often overlooked impact of dietary protein on metabolism and eating behavior, independent of dietary energy content. N2 - Die Nahrungsaufnahme wird nicht nur durch den Bedarf an Energie, sondern auch durch den Bedarf an essenziellen Nährstoffen wie z. B. Protein bestimmt. Es war zwar bekannt, wie proteinreiche Nahrung eine Sättigung vermittelt, jedoch war unklar, wie eine proteinarme Ernährung den Appetit anregt. Ziel dieser Arbeit ist es daher, zu untersuchen, wie Nahrung mit einem niedrigen Proteingehalt detektiert wird und die Anpassung des Organismus im Hinblick auf den Metabolismus und das Ernährungsverhalten erfolgt. Diese Arbeit liefert klare Beweise dafür, dass das aus der Leber stammende Hormon Fibroblast growth factor 21 (FGF21) ein endokrines Signal einer Nahrungsproteinrestriktion ist, wobei der zelluläre Aminosäuresensor general control nonderepressible 2 kinase (GCN2) als Regulator von FGF21 während der Proteinrestriktion fungiert. Im Gehirn vermittelt FGF21 die durch Proteinrestriktion induzierten Stoffwechselreaktionen, z.B. den Anstieg des Energieverbrauches, die Erhöhung der Nahrungsaufnahme und eine Verbesserung der Insulinsensitivität sowie der Glukosehomöostase. Darüber hinaus schützt das durch eine protein- oder methioninarme Diät induzierte FGF21 New Zealand Obese (NZO)-Mäuse, einem Tiermodell für den humanen Typ-2-Diabetes, vor einer Diabetesentstehung. FGF21 spielt bei Nagetieren und Menschen eine wichtige Rolle hinsichtlich der Detektion einer diätetischen Proteinrestriktion sowie eines Ungleichgewichtes der Makronährstoffe zueinander und vermittelt die adaptiven Verhaltens- und Stoffwechselreaktionen. Dies macht FGF21 zu einem kritischen physiologischen Signal der Nahrungsproteinrestriktion und unterstreicht den wichtigen, aber oft übersehenen Einfluss der Nahrungsproteine auf den Stoffwechsel und das Nahrungsaufnahmeverhalten, unabhängig vom Energiegehalt der Nahrung. KW - protein restriction KW - autophagy KW - thermogenesis KW - appetite KW - hyperglycemia KW - methionine restriction KW - bone KW - FGF21 KW - energy expenditure KW - GCN2 KW - metabolism KW - food choice KW - type 2 diabetes Y1 - 2021 ER - TY - THES A1 - Alfine, Eugenia T1 - Investigation of Sirtuin 3 overexpression as a genetic model of fasting in hypothalamic neurons Y1 - 2021 ER - TY - THES A1 - Aga-Barfknecht, Heja T1 - Investigation of the phenotype and genetic variant(s) of the diabetes locus Nidd/DBA N2 - Diabetes is a major public health problem with increasing global prevalence. Type 2 diabetes (T2D), which accounts for 90% of all diagnosed cases, is a complex polygenic disease also modulated by epigenetics and lifestyle factors. For the identification of T2D-associated genes, linkage analyses combined with mouse breeding strategies and bioinformatic tools were useful in the past. In a previous study in which a backcross population of the lean and diabetes-prone dilute brown non-agouti (DBA) mouse and the obese and diabetes-susceptible New Zealand obese (NZO) mouse was characterized, a major diabetes quantitative trait locus (QTL) was identified on chromosome 4. The locus was designated non-insulin dependent diabetes from DBA (Nidd/DBA). The aim of this thesis was (i) to perform a detailed phenotypic characterization of the Nidd/DBA mice, (ii) to further narrow the critical region and (iii) to identify the responsible genetic variant(s) of the Nidd/DBA locus. The phenotypic characterization of recombinant congenic mice carrying a 13.6 Mbp Nidd/DBA fragment with 284 genes presented a gradually worsening metabolic phenotype. Nidd/DBA allele carriers exhibited severe hyperglycemia (~19.9 mM) and impaired glucose clearance at 12 weeks of age. Ex vivo perifusion experiments with islets of 13-week-old congenic mice revealed a tendency towards reduced insulin secretion in homozygous DBA mice. In addition, 16-week-old mice showed a severe loss of β-cells and reduced pancreatic insulin content. Pathway analysis of transcriptome data from islets of congenic mice pointed towards a downregulation of cell survival genes. Morphological analysis of pancreatic sections displayed a reduced number of bi-hormonal cells co-expressing glucagon and insulin in homozygous DBA mice, which could indicate a reduced plasticity of endocrine cells in response to hyperglycemic stress. Further generation and phenotyping of recombinant congenic mice enabled the isolation of a 3.3 Mbp fragment that was still able to induce hyperglycemia and contained 61 genes. Bioinformatic analyses including haplotype mapping, sequence and transcriptome analysis were integrated in order to further reduce the number of candidate genes and to identify the presumable causative gene variant. Four putative candidate genes (Ttc39a, Kti12, Osbpl9, Calr4) were defined, which were either differentially expressed or carried a sequence variant. In addition, in silico ChIP-Seq analyses of the 3.3 Mbp region indicated a high number of SNPs located in active regions of binding sites of β-cell transcription factors. This points towards potentially altered cis-regulatory elements that could be responsible for the phenotype conferred by the Nidd/DBA locus. In summary, the Nidd/DBA locus mediates impaired glucose homeostasis and reduced insulin secretion capacity which finally leads to β-cell death. The downregulation of cell survival genes and reduced plasticity of endocrine cells could further contribute to the β-cell loss. The critical region was narrowed down to a 3.3 Mbp fragment containing 61 genes, of which four might be involved in the development of the diabetogenic Nidd/DBA phenotype. N2 - Die Diabetesprävalenz nimmt seit Jahren weltweit zu, wobei etwa 90% der diagnostizierten Diabeteserkrankungen einem Typ-2-Diabetes (T2D) zuzuordnen sind. T2D ist eine komplexe polygene Stoffwechselerkrankung, die auch durch epigenetische Faktoren und den Lebensstil beeinflusst wird. Die Identifizierung und Untersuchung von Diabetes-assoziierten Genen wird unter anderem durch Kopplungsanalysen und darauf aufbauende zuchtstrategische und bioinformatische Analysen ermöglicht. In einer vorangegangenen Studie wurde der schlanke, Diabetes-anfällige dilute brown non-agouti (DBA)-Mausstamm mit der adipösen und ebenfalls Diabetes-suszeptiblen New Zealand obese (NZO)-Maus verpaart und die erste Rückkreuzungsgeneration einer Kopplungsanalyse unterzogen. Hierbei wurde ein hoch signifikanter quantitative trait locus (QTL) für Diabetes auf Chromosom 4 nachgewiesen. Dieser Locus ist mit erhöhten Blutzuckerwerten, reduzierten Plasmainsulinkonzentrationen und einem niedrigen pankreatischen Insulingehalt assoziiert und wurde als Nidd/DBA (engl. für nicht insulinabhängiger Diabetes von DBA-Allelen) bezeichnet. Das Ziel der vorliegenden Arbeit war es, (i) das kritische Fragment des Nidd/DBA-Locus‘ zu verkleinern, (ii) die phänotypische Ausprägung des Nidd/DBA-Locus‘ zu untersuchen sowie (iii) die ursächliche(n) genetische(n) Variante(n) zu identifizieren. Die phänotypische Charakterisierung von kongenen Mäusen mit einem kritischen Fragment von 13.6 Mbp, welches 284 Gene enthält, zeigte bereits im Alter von 12 Wochen eine starke Hyperglykämie (~19.9 mM) und eine unzureichende Glucose-Clearance bei Nidd/DBA-Allelträgern. Ex-vivo Perifusionsversuche mit isolierten Inseln von 13 Wochen alten kongenen Mäusen zeigten eine tendenziell reduzierte Insulinsekretion in homozygoten DBA-Allelträgern. Im Alter von 16 Wochen wiesen die Tiere einen erheblichen Verlust der β-Zellen, sowie eine Abnahme der pankreatischen Insulinkonzentration auf. Transkriptomdaten der Langerhans-Inseln mit anschließender Signalweganalyse deuteten darauf hin, dass Nidd/DBA-Allelträger eine verminderte Expression von Genen aufzeigen, die für das Überleben von Zellen essentiell sind. In homozygoten DBA-Allelträgern wurde eine reduzierte Anzahl von Glucagon/Insulin-bi-hormonellen Zellen nachgewiesen, was auf eine verminderte Plastizität der endokrinen Zellen hinweisen könnte. Die Zucht weiterer kongener Mäuse und ihre Phänotypisierung ermöglichten die Isolierung eines 3.3 Mbp großen Fragments, das 61 Gene enthielt und eine Hyperglykämie auslöste. Bioinformatische Analysen, wie die Kartierung von Haplotypen und Datenbank-, Sequenz- sowie Transkriptomanalysen, wurden integriert, um die Anzahl der Kandidatengene weiter zu reduzieren und die Hyperglykämie auslösende(n) Genvariante(n) zu identifizieren. Es konnten vier potentielle Kandidatengene (Ttc39a, Osbpl9, Kti12, Calr4) definiert werden, die entweder eine differenzielle Expression oder eine Sequenzvariante aufwiesen. Mit Hilfe von in-silico-Analysen von ChIP-Seq-Daten wurden SNPs in aktiven Bindungsstellen von β-Zell-Transkriptionsfaktoren identifiziert. Diese könnten cis-regulatorische Elemente darstellen, die Gene außerhalb dieses 3.3 Mbp großen Fragments beeinflussen und möglichweise für den Phänotyp verantwortlich sind. Zusammenfassend konnte gezeigt werden, dass der Nidd/DBA-Locus für eine beeinträchtigte Glucosehomöostase und eine Verschlechterung der Insulinsekretion verantwortlich ist, welche langfristig zum Verlust von β-Zellen führen. Die bisherigen Ergebnisse deuten darauf hin, dass sowohl die verringerte Expression der für das Zellüberleben essentiellen Gene als auch eine verringerte Plastizität der endokrinen Zellen zum Untergang von Langerhans-Inseln beitragen. Das kritische Fragment wurde auf eine Größe von 3.3 Mbp mit 61 Genen reduziert, von denen vier Gene als verantwortliche Kandidaten für den beschriebenen Nidd/DBA-Phänotyp bedeutsam sein können KW - Diabetes KW - Genetics KW - Glucose intolerance KW - Insulin secretion KW - Susceptibility-genes KW - Diabetes KW - Genetik KW - Glukoseintoleranz KW - Insulinsekretion KW - Suszeptibilitätsgene Y1 - 2021 ER -