TY - JOUR A1 - Datta, Suparno A1 - Sachs, Jan Philipp A1 - Freitas da Cruz, Harry A1 - Martensen, Tom A1 - Bode, Philipp A1 - Morassi Sasso, Ariane A1 - Glicksberg, Benjamin S. A1 - Böttinger, Erwin T1 - FIBER BT - enabling flexible retrieval of electronic health records data for clinical predictive modeling JF - JAMIA open N2 - Objectives: The development of clinical predictive models hinges upon the availability of comprehensive clinical data. Tapping into such resources requires considerable effort from clinicians, data scientists, and engineers. Specifically, these efforts are focused on data extraction and preprocessing steps required prior to modeling, including complex database queries. A handful of software libraries exist that can reduce this complexity by building upon data standards. However, a gap remains concerning electronic health records (EHRs) stored in star schema clinical data warehouses, an approach often adopted in practice. In this article, we introduce the FlexIBle EHR Retrieval (FIBER) tool: a Python library built on top of a star schema (i2b2) clinical data warehouse that enables flexible generation of modeling-ready cohorts as data frames. Materials and Methods: FIBER was developed on top of a large-scale star schema EHR database which contains data from 8 million patients and over 120 million encounters. To illustrate FIBER's capabilities, we present its application by building a heart surgery patient cohort with subsequent prediction of acute kidney injury (AKI) with various machine learning models. Results: Using FIBER, we were able to build the heart surgery cohort (n = 12 061), identify the patients that developed AKI (n = 1005), and automatically extract relevant features (n = 774). Finally, we trained machine learning models that achieved area under the curve values of up to 0.77 for this exemplary use case. Conclusion: FIBER is an open-source Python library developed for extracting information from star schema clinical data warehouses and reduces time-to-modeling, helping to streamline the clinical modeling process. KW - databases KW - factual KW - electronic health records KW - information storage and KW - retrieval KW - workflow KW - software/instrumentation Y1 - 2021 U6 - https://doi.org/10.1093/jamiaopen/ooab048 SN - 2574-2531 VL - 4 IS - 3 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Schad, Daniel A1 - Betancourt, Michael A1 - Vasishth, Shravan T1 - Toward a principled Bayesian workflow in cognitive science JF - Psychological methods N2 - Experiments in research on memory, language, and in other areas of cognitive science are increasingly being analyzed using Bayesian methods. This has been facilitated by the development of probabilistic programming languages such as Stan, and easily accessible front-end packages such as brms. The utility of Bayesian methods, however, ultimately depends on the relevance of the Bayesian model, in particular whether or not it accurately captures the structure of the data and the data analyst's domain expertise. Even with powerful software, the analyst is responsible for verifying the utility of their model. To demonstrate this point, we introduce a principled Bayesian workflow (Betancourt, 2018) to cognitive science. Using a concrete working example, we describe basic questions one should ask about the model: prior predictive checks, computational faithfulness, model sensitivity, and posterior predictive checks. The running example for demonstrating the workflow is data on reading times with a linguistic manipulation of object versus subject relative clause sentences. This principled Bayesian workflow also demonstrates how to use domain knowledge to inform prior distributions. It provides guidelines and checks for valid data analysis, avoiding overfitting complex models to noise, and capturing relevant data structure in a probabilistic model. Given the increasing use of Bayesian methods, we aim to discuss how these methods can be properly employed to obtain robust answers to scientific questions. KW - workflow KW - prior predictive checks KW - posterior predictive checks KW - model KW - building KW - Bayesian data analysis Y1 - 2021 U6 - https://doi.org/10.1037/met0000275 SN - 1082-989X SN - 1939-1463 VL - 26 IS - 1 SP - 103 EP - 126 PB - American Psychological Association CY - Washington ER -