TY - JOUR A1 - Kahl, Sandra M. A1 - Lenhard, Michael A1 - Joshi, Jasmin Radha T1 - Compensatory mechanisms to climate change in the widely distributed species Silene vulgaris JF - The journal of ecology N2 - The adaptation of plants to future climatic conditions is crucial for their survival. Not surprisingly, phenotypic responses to climate change have already been observed in many plant populations. These responses may be due to evolutionary adaptive changes or phenotypic plasticity. Especially plant species with a wide geographic range are either expected to show genetic differentiation in response to differing climate conditions or to have a high phenotypic plasticity. We investigated phenotypic responses and plasticity as an estimate of the adaptive potential in the widespread species Silene vulgaris. In a greenhouse experiment, 25 European populations covering a geographic range from the Canary Islands to Sweden were exposed to three experimental precipitation and two temperature regimes mimicking a possible climate-change scenario for central Europe. We hypothesized that southern populations have a better performance under high temperature and drought conditions, as they are already adapted to a comparable environment. We found that our treatments significantly influenced the plants, but did not reveal a latitudinal difference in response to climate treatments for most plant traits. Only flower number showed a stronger plasticity in northern European populations (e.g. Swedish populations) where numbers decreased more drastically with increased temperature and decreased precipitation treatment. Synthesis. The significant treatment response in Silene vulgaris, independent of population origin - except for the number of flowers produced - suggests a high degree of universal phenotypic plasticity in this widely distributed species. This reflects the likely adaptation strategy of the species and forms the basis for a successful survival strategy during upcoming climatic changes. However, as flower number, a strongly fitness-related trait, decreased more strongly in northern populations under a climate-change scenario, there might be limits to adaptation even in this widespread, plastic species. KW - climate change KW - global change ecology KW - latitudinal gradient KW - local adaptation KW - phenotypic plasticity KW - plant performance KW - temperature increase Y1 - 2019 U6 - https://doi.org/10.1111/1365-2745.13133 SN - 0022-0477 SN - 1365-2745 VL - 107 IS - 4 SP - 1918 EP - 1930 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Weyrich, Alexandra A1 - Lenz, Dorina A1 - Jeschek, Marie A1 - Tzu Hung Chung, A1 - Ruebensam, Kathrin A1 - Goeritz, Frank A1 - Jewgenow, Katarina A1 - Fickel, Jörns T1 - Paternal intergenerational epigenetic response to heat exposure in male Wild guinea pigs JF - Molecular ecology N2 - Epigenetic modifications, of which DNA methylation is the best studied one, can convey environmental information through generations via parental germ lines. Past studies have focused on the maternal transmission of epigenetic information to the offspring of isogenic mice and rats in response to external changes, whereas heterogeneous wild mammals as well as paternal epigenetic effects have been widely neglected. In most wild mammal species, males are the dispersing sex and have to cope with differing habitats and thermal changes. As temperature is a major environmental factor we investigated if genetically heterogeneous Wild guinea pig (Cavia aperea) males can adapt epigenetically to an increase in temperature and if that response will be transmitted to the next generation(s). Five adult male guinea pigs (F0) were exposed to an increased ambient temperature for 2 months, i.e. the duration of spermatogenesis. We studied the liver (as the main thermoregulatory organ) of F0 fathers and F1 sons, and testes of F1 sons for paternal transmission of epigenetic modifications across generation(s). Reduced representation bisulphite sequencing revealed shared differentially methylated regions in annotated areas between F0 livers before and after heat treatment, and their sons’ livers and testes, which indicated a general response with ecological relevance. Thus, paternal exposure to a temporally limited increased ambient temperature led to an ‘immediate’ and ‘heritable’ epigenetic response that may even be transmitted to the F2 generation. In the context of globally rising temperatures epigenetic mechanisms may become increasingly relevant for the survival of species. KW - adaptation KW - Cavia aperea KW - DNA methylation KW - environmental factor KW - global change KW - plasticity KW - temperature increase Y1 - 2016 U6 - https://doi.org/10.1111/mec.13494 SN - 0962-1083 SN - 1365-294X VL - 25 SP - 1729 EP - 1740 PB - Wiley-Blackwell CY - Hoboken ER -