TY - JOUR A1 - Blanchard, Ingrid A1 - Abeykoon, Sumith A1 - Frost, Daniel J. A1 - Rubie, David C. T1 - Sulfur content at sulfide saturation of peridotitic melt at upper mantle conditions JF - American mineralogist : an international journal of earth and planetary materials / Mineralogical Society of America N2 - The concentration of sulfur that can be dissolved in a silicate liquid is of fundamental importance because it is closely associated with several major Earth-related processes. Considerable effort has been made to understand the interplay between the effects of silicate melt composition and its capac-ity to retain sulfur, but the dependence on pressure and temperature is mostly based on experiments performed at pressures and temperatures below 6 GPa and 2073 K. Here we present a study of the effects of pressure and temperature on sulfur content at sulfide saturation of a peridotitic liquid. We performed 14 multi-anvil experiments using a peridotitic starting composition, and we produced 25 new measurements at conditions ranging from 7 to 23 GPa and 2173 to 2623 K. We analyzed the recovered samples using both electron microprobe and laser ablation ICP-MS. We compiled our data together with previously published data that were obtained at lower P-T conditions and with various silicate melt compositions. We present a new model based on this combined data set that encompasses the entire range of upper mantle pressure-temperature conditions, along with the effect of a wide range of silicate melt compositions. Our findings are consistent with earlier work based on extrapolation from lower-pressure and lower-temperature experiments and show a decrease of sulfur content at sulfide saturation (SCSS) with increasing pressure and an increase of SCSS with increasing temperature. We have extrapolated our results to pressure-temperature conditions of the Earth's primitive magma ocean, and show that FeS will exsolve from the molten silicate and can effectively be extracted to the core by a process that has been termed the "Hadean Matte." We also discuss briefly the implications of our results for the lunar magma ocean. KW - Peridotitic melts KW - sulfur solubility KW - high pressure KW - high temperature KW - magma ocean Y1 - 2021 U6 - https://doi.org/10.2138/am-2021-7649 SN - 0003-004X SN - 1945-3027 VL - 106 IS - 11 SP - 1835 EP - 1843 PB - Mineralogical Society of America CY - Washington, DC [u.a.] ER - TY - JOUR A1 - Wojnarowska, Zaneta A1 - Lange, Alyna A1 - Taubert, Andreas A1 - Paluch, Marian T1 - Ion and proton transport in aqueous/nonaqueous acidic tonic liquids for fuel-cell applications-insight from high-pressure dielectric studies JF - ACS applied materials & interfaces / American Chemical Society N2 - The use of acidic ionic liquids and solids as electrolytes in fuel cells is an emerging field due to their efficient proton conductivity and good thermal stability. Despite multiple reports describing conducting properties of acidic ILs, little is known on the charge-transport mechanism in the vicinity of liquid-glass transition and the structural factors governing the proton hopping. To address these issues, we studied two acidic imidazolium-based ILs with the same cation, however, different anions-bulk tosylate vs small methanesulfonate. High-pressure dielectric studies of anhydrous and water-saturated materials performed in the close vicinity of T-g have revealed significant differences in the charge-transport mechanism in these two systems being undetectable at ambient conditions. Thereby, we demonstrated the effect of molecular architecture on proton hopping, being crucial in the potential electrochemical applications of acidic ILs. KW - proton hopping KW - dielectric spectroscopy KW - high pressure KW - ion transport KW - acidic ionic liquids Y1 - 2021 U6 - https://doi.org/10.1021/acsami.1c06260 SN - 1944-8244 SN - 1944-8252 VL - 13 IS - 26 SP - 30614 EP - 30624 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Müller, Hans J. A1 - Beckmann, Felix A1 - Dobson, David P. A1 - Hunt, Simon A. A1 - Lathe, Christian A1 - Stroncik, Nicole T1 - New techniques for high pressure falling sphere viscosimetry in DIA-type large volume presses JF - High pressure research KW - falling sphere viscosimetry KW - inelastic properties KW - high pressure KW - X-radiography Y1 - 2014 U6 - https://doi.org/10.1080/08957959.2014.950262 SN - 0895-7959 SN - 1477-2299 VL - 34 IS - 3 SP - 345 EP - 354 PB - Routledge, Taylor & Francis Group CY - Abingdon ER -