TY - JOUR A1 - Carvalho, Bruna B. A1 - Bartoli, Omar A1 - Ferri, Fabio A1 - Cesare, Bernardo A1 - Ferrero, Silvio A1 - Remusat, Laurent A1 - Capizzi, Luca Samuele A1 - Poli, Stefano T1 - Anatexis and fluid regime of the deep continental crust: New clues from melt and fluid inclusions in metapelitic migmatites from Ivrea Zone (NW Italy) JF - Journal of metamorphic geology N2 - We investigate the inclusions hosted in peritectic garnet from metapelitic migmatites of the Kinzigite Formation (Ivrea Zone, NW Italy) to evaluate the starting composition of the anatectic melt and fluid regime during anatexis throughout the upper amphibolite facies, transition, and granulite facies zones. Inclusions have negative crystal shapes, sizes from 2 to 10 mu m and are regularly distributed in the core of the garnet. Microstructural and micro-Raman investigations indicate the presence of two types of inclusions: crystallized silicate melt inclusions (i.e., nanogranitoids, NI), and fluid inclusions (FI). Microstructural evidence suggests that FI and NI coexist in the same cluster and are primary (i.e., were trapped simultaneously during garnet growth). FI have similar compositions in the three zones and comprise variable proportions of CO2, CH4, and N-2, commonly with siderite, pyrophyllite, and kaolinite, suggesting a COHN composition of the trapped fluid. The mineral assemblage in the NI contains K-feldspar, plagioclase, quartz, biotite, muscovite, chlorite, graphite and, rarely, calcite. Polymorphs such as kumdykolite, cristobalite, tridymite, and less commonly kokchetavite, were also found. Rehomogenized NI from the different zones show that all the melts are leucogranitic but have slightly different compositions. In samples from the upper amphibolite facies, melts are less mafic (FeO + MgO = 2.0-3.4 wt%), contain 860-1700 ppm CO2 and reach the highest H2O contents (6.5-10 wt%). In the transition zone melts have intermediate H2O (4.8-8.5 wt%), CO2 (457-1534 ppm) and maficity (FeO + MgO = 2.3-3.9 wt%). In contrast, melts at granulite facies reach highest CaO, FeO + MgO (3.2-4.7 wt%), and CO2 (up to 2,400 ppm), with H2O contents comparable (5.4-8.3 wt%) to the other two zones. Our results represent the first clear evidence for carbonic fluid-present melting in the Ivrea Zone. Anatexis of metapelites occurred through muscovite and biotite breakdown melting in the presence of a COH fluid, in a situation of fluid-melt immiscibility. The fluid is assumed to have been internally derived, produced initially by devolatilization of hydrous silicates in the graphitic protolith, then as a result of oxidation of carbon by consumption of Fe3+-bearing biotite during melting. Variations in the compositions of the melts are interpreted to result from higher T of melting. The H2O contents of the melts throughout the three zones are higher than usually assumed for initial H2O contents of anatectic melts. The CO2 contents are highest at granulite facies, and show that carbon-contents of crustal magmas are not negligible at high T. The activity of H2O of the fluid dissolved in granitic melts decreases with increasing metamorphic grade. Carbonic fluid-present melting of the deep continental crust represents, together with hydrate-breakdown melting reactions, an important process in the origin of crustal anatectic granitoids. KW - anatexis KW - fluid inclusions KW - fluid regime KW - Ivrea Zone KW - melt inclusions Y1 - 2019 U6 - https://doi.org/10.1111/jmg.12463 SN - 0263-4929 SN - 1525-1314 VL - 37 IS - 7 SP - 951 EP - 975 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Ziemann, Martin Andreas T1 - In situ micro-Raman spectroscopy on minerals on-site in the Grotto Hall of the New Palace, Park Sanssouci, in Potsdam JF - Journal of Raman spectroscopy : JRS N2 - Questions of identity and provenance of minerals that are parts of masterpieces in museums have become increasingly important in mineralogical and historical studies. Detailed investigations of valuable and unique objects require on-site, nondestructive and noninvasive methods because touching or removing them may cause irreparable damage. A mobile Raman-microprobe has been used to meet these demands for truly in situ mineralogical studies of the large collection of minerals and rocks of the Prussian kings in the Grotto Hall (Grottensaal) of the New Palace (Neues Palais), Park Sanssouci in Potsdam. Minerals on the walls of the Grotto Hall were analyzed to identify them and thereby to complete the data bank of the collection. Fluid and solid inclusions in the interior of a large quartz crystal have been studied to provide evidence of the provenance of the crystal. The fluid inclusions contain aqueous saline solutions, whereas the solid inclusions are needles of anhydrite with a length of about 1.5 mm. The quartz probably originated from an area in the eastern Alps, from the surroundings of Bad Gastein, Austria. This is the first on-site and in situ study of inclusions below the surface of a mineral with a mobile Raman-microprobe outside a laboratory. KW - mobile Raman-microprobe KW - minerals KW - provenance KW - fluid inclusions KW - anhydrite inclusions Y1 - 2006 U6 - https://doi.org/10.1002/jrs.1584 SN - 0377-0486 VL - 37 IS - 10 SP - 1019 EP - 1025 PB - Wiley CY - Chichester ER - TY - JOUR A1 - Ferrero, Silvio A1 - Braga, R. A1 - Berkesi, M. A1 - Cesare, Bernardo A1 - Ouazaa, N. Laridhi T1 - Production of metaluminous melt during fluid-present anatexis: an example from the Maghrebian basement, La Galite Archipelago, central Mediterranean JF - Journal of metamorphic geology N2 - Garnet brought to the surface by late Miocene granitoids at La Galite Archipelago (Central Mediterranean, Tunisia) contains abundant primary melt and fluid inclusions. Microstructural observations and mineral chemistry define the host garnet as a peritectic phase produced by biotite incongruent melting at ~800 degrees C and 0.5GPa, under fluid-present conditions. The trapped melt is leucogranitic with an unexpected metaluminous and almost peralkaline character. Fluid inclusions are one phase at room temperature, and contain a CO2-dominated fluid, with minor H2O, N-2 and CH4. Siderite and an OH-bearing phase were identified by Raman and IR spectroscopy within every analysed inclusion, and are interpreted as products of a post-entrapment carbonation/hydration reaction between the fluid and the host during cooling. The fluid present during anatexis is therefore inferred to have been originally richer in both H2O and CO2. The production of anatectic melt with a metaluminous signature can be explained as the result of partial melting of relatively Al-poor protoliths assisted by CO2-rich fluids. KW - fluid inclusions KW - garnet KW - anatexis KW - nanogranites KW - melt inclusions Y1 - 2014 U6 - https://doi.org/10.1111/jmg.12068 SN - 0263-4929 SN - 1525-1314 VL - 32 IS - 2 SP - 209 EP - 225 PB - Wiley-Blackwell CY - Hoboken ER -