TY - JOUR A1 - Fandrich, Artur A1 - Buller, Jens A1 - Schäfer, Daniel A1 - Wischerhoff, Erik A1 - Laschewsky, André A1 - Lisdat, Fred T1 - Electrochemical characterization of a responsive macromolecular interface on gold JF - Physica status solidi : A, Applications and materials science N2 - This study reports on the investigation of a thermoresponsive polymer as a thin film on electrodes and the influence of coupling a peptide and an antibody to the film. The utilized polymer from the class of poly(oligoethylene glycol)-methacrylate polymers (poly(OEGMA)) with carboxy functions containing side chains was synthesized and properly characterized in aqueous solutions. The dependence of the cloud point on the pH of the surrounding media is discussed. The responsive polymer was immobilized on gold electrodes as shown by electrochemical, quartz crystal microbalance (QCM), and atomic force microscopy (AFM) techniques. The temperature dependent behavior of the polymer covalently grafted to gold substrates is investigated using cyclic voltammetry (CV) in ferro-/ferricyanide solution. Significant changes in the slope of the temperature-dependence of the voltammetric peak current and the peak separation values clearly indicate the thermally induced conformational change on the surface. Finally, a biorecognition reaction between a short FLAG peptide (N-Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys-C) covalently immobilized on the polymer interface and the corresponding IgG antibody was performed. The study shows that the responsiveness of the electrode is retained after peptide coupling and antibody binding, although the response is diminished. KW - biorecognition reactions KW - cyclic voltammetry KW - electrodes KW - gold KW - interfaces KW - responsive polymers Y1 - 2015 U6 - https://doi.org/10.1002/pssa.201431698 SN - 1862-6300 SN - 1862-6319 VL - 212 IS - 6 SP - 1359 EP - 1367 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Lange, Ilja A1 - Reiter, Sina A1 - Paetzel, Michael A1 - Zykov, Anton A1 - Nefedov, Alexei A1 - Hildebrandt, Jana A1 - Hecht, Stefan A1 - Kowarik, Stefan A1 - Woell, Christof A1 - Heimel, Georg A1 - Neher, Dieter T1 - Tuning the work function of polar zinc oxide surfaces using modified phosphonic acid self-assembled monolayers JF - Advanced functional materials N2 - Zinc oxide (ZnO) is regarded as a promising alternative material for transparent conductive electrodes in optoelectronic devices. However, ZnO suffers from poor chemical stability. ZnO also has a moderate work function (WF), which results in substantial charge injection barriers into common (organic) semiconductors that constitute the active layer in a device. Controlling and tuning the ZnO WF is therefore necessary but challenging. Here, a variety of phosphonic acid based self-assembled monolayers (SAMs) deposited on ZnO surfaces are investigated. It is demonstrated that they allow the tuning the WF over a wide range of more than 1.5 eV, thus enabling the use of ZnO as both the hole-injecting and electron-injecting contact. The modified ZnO surfaces are characterized using a number of complementary techniques, demonstrating that the preparation protocol yields dense, well-defined molecular monolayers. KW - ZnO KW - self-assembled monolayers KW - phosphonic acid KW - surface modification KW - electrodes Y1 - 2014 U6 - https://doi.org/10.1002/adfm.201401493 SN - 1616-301X SN - 1616-3028 VL - 24 IS - 44 SP - 7014 EP - 7024 PB - Wiley-VCH CY - Weinheim ER -