TY - JOUR A1 - Sorgenfrei, Nomi A1 - Giangrisostomi, Erika A1 - Jay, Raphael Martin A1 - Kühn, Danilo A1 - Neppl, Stefan A1 - Ovsyannikov, Ruslan A1 - Sezen, Hikmet A1 - Svensson, Svante A1 - Föhlisch, Alexander T1 - Photodriven transient picosecond top-layer semiconductor to metal phase-transition in p-doped molybdenum disulfide JF - Advanced materials N2 - Visible light is shown to create a transient metallic S-Mo-S surface layer on bulk semiconducting p-doped indirect-bandgap 2H-MoS2. Optically created electron-hole pairs separate in the surface band bending region of the p-doped semiconducting crystal causing a transient accumulation of electrons in the surface region. This triggers a reversible 2H-semiconductor to 1T-metal phase-transition of the surface layer. Electron-phonon coupling of the indirect-bandgap p-doped 2H-MoS2 enables this efficient pathway even at a low density of excited electrons with a distinct optical excitation threshold and saturation behavior. This mechanism needs to be taken into consideration when describing the surface properties of illuminated p-doped 2H-MoS2. In particular, light-induced increased charge mobility and surface activation can cause and enhance the photocatalytic and photoassisted electrochemical hydrogen evolution reaction of water on 2H-MoS2. Generally, it opens up for a way to control not only the surface of p-doped 2H-MoS2 but also related dichalcogenides and layered systems. The findings are based on the sensitivity of time-resolved electron spectroscopy for chemical analysis with photon-energy-tuneable synchrotron radiation. KW - catalysis KW - dichalcogenides KW - hydrogen evolution reaction KW - phase transitions KW - photoelectron spectroscopy Y1 - 2021 U6 - https://doi.org/10.1002/adma.202006957 SN - 0935-9648 SN - 1521-4095 VL - 33 IS - 14 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Grebenkov, Denis S. T1 - An encounter-based approach for restricted diffusion with a gradient drift JF - Journal of physics : A, Mathematical and theoretical N2 - We develop an encounter-based approach for describing restricted diffusion with a gradient drift toward a partially reactive boundary. For this purpose, we introduce an extension of the Dirichlet-to-Neumann operator and use its eigenbasis to derive a spectral decomposition for the full propagator, i.e. the joint probability density function for the particle position and its boundary local time. This is the central quantity that determines various characteristics of diffusion-influenced reactions such as conventional propagators, survival probability, first-passage time distribution, boundary local time distribution, and reaction rate. As an illustration, we investigate the impact of a constant drift onto the boundary local time for restricted diffusion on an interval. More generally, this approach accesses how external forces may influence the statistics of encounters of a diffusing particle with the reactive boundary. KW - boundary local time KW - reflected Brownian motion KW - diffusion-influenced KW - reactions KW - surface reactivity KW - Robin boundary condition KW - Heterogeneous KW - catalysis Y1 - 2022 U6 - https://doi.org/10.1088/1751-8121/ac411a SN - 1751-8113 SN - 1751-8121 VL - 55 IS - 4 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Balischewski, Christian A1 - Choi, Hyung-Seok A1 - Behrens, Karsten A1 - Beqiraj, Alkit A1 - Körzdörfer, Thomas A1 - Gessner, Andre A1 - Wedel, Armin A1 - Taubert, Andreas T1 - Metal sulfide nanoparticle synthesis with ionic liquids state of the art and future perspectives JF - ChemistryOpen N2 - Metal sulfides are among the most promising materials for a wide variety of technologically relevant applications ranging from energy to environment and beyond. Incidentally, ionic liquids (ILs) have been among the top research subjects for the same applications and also for inorganic materials synthesis. As a result, the exploitation of the peculiar properties of ILs for metal sulfide synthesis could provide attractive new avenues for the generation of new, highly specific metal sulfides for numerous applications. This article therefore describes current developments in metal sulfide nano-particle synthesis as exemplified by a number of highlight examples. Moreover, the article demonstrates how ILs have been used in metal sulfide synthesis and discusses the benefits of using ILs over more traditional approaches. Finally, the article demonstrates some technological challenges and how ILs could be used to further advance the production and specific property engineering of metal sulfide nanomaterials, again based on a number of selected examples. KW - Ionic liquids KW - ionic liquid crystals KW - ionic liquid precursors KW - metal KW - sulfides KW - catalysis KW - electrochemistry KW - energy materials KW - LED KW - solar KW - cells Y1 - 2021 U6 - https://doi.org/10.1002/open.202000357 SN - 2191-1363 VL - 10 IS - 2 SP - 272 EP - 295 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Qin, Qing A1 - Oschatz, Martin T1 - Overcoming chemical inertness under ambient conditions BT - a critical view on recent developments in Ammonia synthesis via electrochemical N-2 reduction by asking five questions JF - ChemElectroChem N2 - Ammonia (NH3) synthesis by the electrochemical N-2 reduction reaction (NRR) is increasingly studied and proposed as an alternative process to overcome the disadvantages of Haber-Bosch synthesis by a more energy-efficient, carbon-free, delocalized, and sustainable process. An ever-increasing number of scientists are working on the improvement of the faradaic efficiency (FE) and NH3 production rate by developing novel catalysts, electrolyte concepts, and/or by contributing theoretical studies. The present Minireview provides a critical view on the interplay of different crucial aspects in NRR from the electrolyte, over the mechanism of catalytic activation of N-2, to the full electrochemical cell. Five critical questions are asked, discussed, and answered, each coupled with a summary of recent developments in the respective field. This article is not supposed to be a complete summary of recent research about NRR but provides a rather critical personal view on the field. It is the major aim to give an overview over crucial influences on different length scales to shine light on the sweet spots into which room for revolutionary instead of incremental improvements may exist. KW - N-2 reduction KW - ammonia synthesis KW - catalysis KW - catalysts KW - electrolytes Y1 - 2022 U6 - https://doi.org/10.1002/celc.201901970 SN - 2196-0216 VL - 7 IS - 4 SP - 878 EP - 889 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Yarman, Aysu A1 - Scheller, Frieder W. T1 - How reliable is the electrochemical readout of MIP sensors? JF - Sensors N2 - Electrochemical methods offer the simple characterization of the synthesis of molecularly imprinted polymers (MIPs) and the readouts of target binding. The binding of electroinactive analytes can be detected indirectly by their modulating effect on the diffusional permeability of a redox marker through thin MIP films. However, this process generates an overall signal, which may include nonspecific interactions with the nonimprinted surface and adsorption at the electrode surface in addition to (specific) binding to the cavities. Redox-active low-molecular-weight targets and metalloproteins enable a more specific direct quantification of their binding to MIPs by measuring the faradaic current. The in situ characterization of enzymes, MIP-based mimics of redox enzymes or enzyme-labeled targets, is based on the indication of an electroactive product. This approach allows the determination of both the activity of the bio(mimetic) catalyst and of the substrate concentration. KW - molecularly imprinted polymers KW - electropolymerization KW - direct electron KW - transfer KW - catalysis KW - redox marker KW - gate effect Y1 - 2020 U6 - https://doi.org/10.3390/s20092677 SN - 1424-8220 VL - 20 IS - 9 PB - MDPI CY - Basel ER - TY - THES A1 - Zhao, Yuhang T1 - Synthesis and surface functionalization on plasmonic nanoparticles for optical applications N2 - This thesis focuses on the synthesis of novel functional materials based on plasmonic nanoparticles. Three systems with targeted surface modification and functionalization have been designed and synthesized, involving modified perylenediimide doped silica-coated silver nanowires, polydopamine or TiO2 coated gold-palladium nanorods and thiolated poly(ethylene glycol) (PEG-SH)/dodecanethiol (DDT) modified silver nanospheres. Their possible applications as plasmonic resonators, chiral sensors as well as photo-catalysts have been studied. In addition, the interaction between silver nanospheres and 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) molecules has also been investigated in detail. In the first part of the thesis, surface modification on Ag nanowires (NWs) with optimized silica coating through a modified Stöber method has been firstly conducted, employing sodium hydroxide (NaOH) to replace ammonia solution (NH4OH). The coated silver nanowires with a smooth silica shell have been investigated by single-particle dark-field scattering spectroscopy, transmission electron microscopy and electron-energy loss spectroscopy to characterize the morphologies and structural components. The silica-coated silver nanowires can be further functionalized with fluorescent molecules in the silica shell via a facile one-step coating method. The as-synthesized nanowire is further coupled with a gold nanosphere by spin-coating for the application of the sub-diffractional chiral sensor for the first time. The exciton-plasmon-photon interconversion in the system eases the signal detection in the perfectly matched 1D nanostructure and contributes to the high contrast of the subwavelength chiral sensing for the polarized light. In the second part of the thesis, dumbbell-shaped Au-Pd nanorods coated with a layer of polydopamine (PDA) or titanium dioxide (TiO2) have been constructed. The PDA- and TiO2- coated Au-Pd nanorods show a strong photothermal conversion performance under NIR illumination. Moreover, the catalytic performance of the particles has been investigated using the reduction of 4-nitrophenol (4-NP) as the model reaction. Under light irradiation, the PDA-coated Au-Pd nanorods exhibit a superior catalytic activity by increasing the reaction rate constant of 3 times. The Arrhenius-like behavior of the reaction with similar activation energies in the presence and absence of light irradiation indicates the photoheating effect to be the dominant mechanism of the reaction acceleration. Thus, we attribute the enhanced performance of the catalysis to the strong photothermal effect that is driven by the optical excitation of the gold surface plasmon as well as the synergy with the PDA layer. In the third part, the kinetic study on the adsorption of 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquino-dimethane (F4TCNQ) on the surface of Ag nanoparticles (Ag NPs) in chloroform has been reported in detail. Based on the results obtained from the UV-vis-NIR absorption spectroscopy, cryogenic transmission electron microscopy (cryo-TEM), scanning nano-beam electron diffraction (NBED) and electron energy loss spectroscopy (EELS), a two-step interaction kinetics has been proposed for the Ag NPs and F4TCNQ molecules. It includes the first step of electron transfer from Ag NPs to F4TCNQ indicated by the ionization of F4TCNQ, and the second step of the formation of Ag-F4TCNQ complex. The whole process has been followed via UV-vis-NIR absorption spectroscopy, which reveals distinct kinetics at two stages: the instantaneous ionization and the long-term complex formation. The kinetics and the influence of the molar ratio of Ag NPs/F4TCNQ molecules on the interaction between Ag NPs and F4TCNQ molecules in the organic solution are reported herein for the first time. Furthermore, the control experiment with silica-coated Ag NPs indicates that the charge transfer at the surface between Ag NPs and F4TCNQ molecules has been prohibited by a silica layer of 18 nm. KW - plasmonic nanoparticles KW - silica KW - polydopamine KW - TiO2 KW - chiral sensing KW - catalysis KW - surface interaction Y1 - 2021 ER - TY - JOUR A1 - Sarhan, Radwan Mohamed A1 - Koopman, Wouter-Willem Adriaan A1 - Schuetz, Roman A1 - Schmid, Thomas A1 - Liebig, Ferenc A1 - Koetz, Joachim A1 - Bargheer, Matias T1 - The importance of plasmonic heating for the plasmondriven photodimerization of 4-nitrothiophenol JF - Scientific Reports N2 - Metal nanoparticles form potent nanoreactors, driven by the optical generation of energetic electrons and nanoscale heat. The relative influence of these two factors on nanoscale chemistry is strongly debated. This article discusses the temperature dependence of the dimerization of 4-nitrothiophenol (4-NTP) into 4,4′-dimercaptoazobenzene (DMAB) adsorbed on gold nanoflowers by Surface-Enhanced Raman Scattering (SERS). Raman thermometry shows a significant optical heating of the particles. The ratio of the Stokes and the anti-Stokes Raman signal moreover demonstrates that the molecular temperature during the reaction rises beyond the average crystal lattice temperature of the plasmonic particles. The product bands have an even higher temperature than reactant bands, which suggests that the reaction proceeds preferentially at thermal hot spots. In addition, kinetic measurements of the reaction during external heating of the reaction environment yield a considerable rise of the reaction rate with temperature. Despite this significant heating effects, a comparison of SERS spectra recorded after heating the sample by an external heater to spectra recorded after prolonged illumination shows that the reaction is strictly photo-driven. While in both cases the temperature increase is comparable, the dimerization occurs only in the presence of light. Intensity dependent measurements at fixed temperatures confirm this finding. KW - enhanced raman-scattering KW - charge-transfer KW - metal KW - nanoparticles KW - catalysis KW - AU KW - 4-nitrobenzenethiol KW - aminothiophenol KW - photocatalysis KW - wavelength Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-38627-2 SN - 2045-2322 VL - 9 PB - Macmillan Publishers Limited CY - London ER -