TY - JOUR A1 - Fabian, Jenny A1 - Zlatanovic, Sanja A1 - Mutz, Michael A1 - Grossart, Hans-Peter A1 - van Geldern, Robert A1 - Ulrich, Andreas A1 - Gleixner, Gerd A1 - Premke, Katrin T1 - Environmental control on microbial turnover of leaf carbon in streams BT - Ecological function of phototrophic-heterotrophic interactions JF - Frontiers in microbiology N2 - In aquatic ecosystems, light availability can significantly influence microbial turnover of terrestrial organic matter through associated metabolic interactions between phototrophic and heterotrophic communities. However, particularly in streams, microbial functions vary significantly with the structure of the streambed, that is the distribution and spatial arrangement of sediment grains in the streambed. It is therefore essential to elucidate how environmental factors synergistically define the microbial turnover of terrestrial organic matter in order to better understand the ecological role of photoheterotrophic interactions in stream ecosystem processes. In outdoor experimental streams, we examined how the structure of streambeds modifies the influence of light availability on microbial turnover of leaf carbon (C). Furthermore, we investigated whether the studied relationships of microbial leaf C turnover to environmental conditions are affected by flow intermittency commonly occurring in streams. We applied leaves enriched with a C-13-stable isotope tracer and combined quantitative and isotope analyses. We thereby elucidated whether treatment induced changes in C turnover were associated with altered use of leaf C within the microbial food web. Moreover, isotope analyses were combined with measurements of microbial community composition to determine whether changes in community function were associated with a change in community composition. In this study, we present evidence, that environmental factors interactively determine how phototrophs and heterotrophs contribute to leaf C turnover. Light availability promoted the utilization of leaf C within the microbial food web, which was likely associated with a promoted availability of highly bioavailable metabolites of phototrophic origin. However, our results additionally confirm that the structure of the streambed modifies light-related changes in microbial C turnover. From our observations, we conclude that the streambed structure influences the strength of photo-heterotrophic interactions by defining the spatial availability of algal metabolites in the streambed and the composition of microbial communities. Collectively, our multifactorial approach provides valuable insights into environmental controls on the functioning of stream ecosystems. KW - algae KW - bacteria KW - microbial interactions KW - C-13 stable isotopes KW - PLFA KW - terrestrial carbon KW - streambed structure KW - light Y1 - 2018 U6 - https://doi.org/10.3389/fmicb.2018.01044 SN - 1664-302X VL - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Weithoff, Guntram A1 - Beisner, Beatrix E. T1 - Measures and Approaches in Trait-Based Phytoplankton Community Ecology BT - From Freshwater to Marine Ecosystems JF - Frontiers in Marine Science N2 - Trait-based approaches to investigate (short- and long-term) phytoplankton dynamics and community assembly have become increasingly popular in freshwater and marine science. Although the nature of the pelagic habitat and the main phytoplankton taxa and ecology are relatively similar in both marine and freshwater systems, the lines of research have evolved, at least in part, separately. We compare and contrast the approaches adopted in marine and freshwater ecosystems with respect to phytoplankton functional traits. We note differences in study goals relating to functional trait use that assess community assembly and those that relate to ecosystem processes and biogeochemical cycling that affect the type of characteristics assigned as traits to phytoplankton taxa. Specific phytoplankton traits relevant for ecological function are examined in relation to herbivory, amplitude of environmental change and spatial and temporal scales of study. Major differences are identified, including the shorter time scale for regular environmental change in freshwater ecosystems compared to that in the open oceans as well as the type of sampling done by researchers based on site-accessibility. Overall, we encourage researchers to better motivate why they apply trait-based analyses to their studies and to make use of process-driven approaches, which are more common in marine studies. We further propose fully comparative trait studies conducted along the habitat gradient spanning freshwater to brackish to marine systems, or along geographic gradients. Such studies will benefit from the combined strength of both fields. KW - algae KW - functional traits KW - ocean KW - lake KW - biogeochemistry KW - community assembly Y1 - 2019 U6 - https://doi.org/10.3389/fmars.2019.00040 SN - 2296-7745 VL - 6 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Weithoff, Guntram A1 - Rocha, Marcia R. A1 - Gaedke, Ursula T1 - Comparing seasonal dynamics of functional and taxonomic diversity reveals the driving forces underlying phytoplankton community structure JF - Freshwater biology N2 - In most biodiversity studies, taxonomic diversity is the measure for the multiplicity of species and is often considered to represent functional diversity. However, trends in taxonomic diversity and functional diversity may differ, for example, when many functionally similar but taxonomically different species co-occur in a community. The differences between these diversity measures are of particular interest in diversity research for understanding diversity patterns and their underlying mechanisms. We analysed a temporally highly resolved 20-year time series of lake phytoplankton to determine whether taxonomic diversity and functional diversity exhibit similar or contrasting seasonal patterns. We also calculated the functional mean of the community in n-dimensional trait space for each sampling day to gain further insights into the seasonal dynamics of the functional properties of the community. We found an overall weak positive relationship between taxonomic diversity and functional diversity with a distinct seasonal pattern. The two diversity measures showed synchronous behaviour from early spring to mid-summer and a more complex and diverging relationship from autumn to late winter. The functional mean of the community exhibited a recurrent annual pattern with the most prominent changes before and after the clear-water phase. From late autumn to winter, the functional mean of the community and functional diversity were relatively constant while taxonomic diversity declined, suggesting competitive exclusion during this period. A further decline in taxonomic diversity concomitant with increasing functional diversity in late winter to early spring is seen as a result of niche diversification together with competitive exclusion. Under these conditions, several different sets of traits are suitable to thrive, but within one set of functional traits only one, or very few, morphotypes can persist. Taxonomic diversity alone is a weak descriptor of trait diversity in phytoplankton. However, the combined analysis of taxonomic diversity and functional diversity, along with the functional mean of the community, allows for deeper insights into temporal patterns of community assembly and niche diversification. KW - algae KW - biodiversity KW - functional traits KW - seasonality KW - time series Y1 - 2015 U6 - https://doi.org/10.1111/fwb.12527 SN - 0046-5070 SN - 1365-2427 VL - 60 IS - 4 SP - 758 EP - 767 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Winck, Flavia Vischi A1 - Kwasniewski, Miroslaw A1 - Wienkoop, Stefanie A1 - Müller-Röber, Bernd T1 - An optimized method for the isolation of nuclei from chlamydomas Reinhardtii (Chlorophyceae) JF - Journal of phycology N2 - The cell nucleus harbors a large number of proteins involved in transcription, RNA processing, chromatin remodeling, nuclear signaling, and ribosome assembly. The nuclear genome of the model alga Chlamydomonas reinhardtii P. A. Dang. was recently sequenced, and many genes encoding nuclear proteins, including transcription factors and transcription regulators, have been identified through computational discovery tools. However, elucidating the specific biological roles of nuclear proteins will require support from biochemical and proteomics data. Cellular preparations with enriched nuclei are important to assist in such analyses. Here, we describe a simple protocol for the isolation of nuclei from Chlamydomonas, based on a commercially available kit. The modifications done in the original protocol mainly include alterations of the differential centrifugation parameters and detergent-based cell lysis. The nuclei-enriched fractions obtained with the optimized protocol show low contamination with mitochondrial and plastid proteins. The protocol can be concluded within only 3 h, and the proteins extracted can be used for gel-based and non-gel-based proteomic approaches. KW - 2D gel electrophoresis KW - algae KW - Chlamydomonas KW - nuclear proteins KW - nucleus KW - proteomics Y1 - 2011 U6 - https://doi.org/10.1111/j.1529-8817.2011.00967.x SN - 0022-3646 VL - 47 IS - 2 SP - 333 EP - 340 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Piepho, Maike A1 - Martin-Creuzburg, Dominik A1 - Wacker, Alexander T1 - Phytoplankton sterol contents vary with temperature, phosphorus and silicate supply a study on three freshwater species JF - European journal of phycology N2 - The understanding of environmentally induced changes in the biochemical composition of phytoplankton species is of great importance in both physiological studies and ecological food web research. In extensive laboratory experiments we tested the influence of two different temperatures (10 degrees C and 25 degrees C) and a phosphorus supply gradient on the sterol concentrations of the three freshwater phytoplankton species Scenedesmus quadricauda, Cryptomonas ovata and Cyclotella meneghiniana. The diatom C. meneghiniana was additionally exposed to a silicate gradient. In two separate experiments we analysed (1) possible interactive effects of temperature and phosphorus supply and (2) the effect of four phosphorus levels and three silicate levels on algal sterol concentrations. We observed that sterol concentrations were higher at 25 degrees C than at 10 degrees C in S. quadricauda and C. meneghiniana, but were not affected by temperature in C. ovata. Interactive effects of temperature and phosphorus supply on sterol concentrations were found in C. meneghiniana. This presumably was due to the bioconversion of one sterol (24-methylenecholesterol) into another (22-dihydrobrassicasterol). Increasing phosphorus supply resulted in species-specific effects on sterol concentrations, viz. an optimum curve response in S. quadricauda, a saturation curve response in C. meneghiniana and no change in sterol concentration in C. ovata. Effects of silicate supply on the sterols of C. meneghiniana equalled the effects of phosphorus supply. Albeit we did not observe a general trend in the three phytoplankton species tested, we conclude that sterol concentrations of phytoplankton are strongly affected by temperature and nutrient supply. Interactive effects point out the importance of taking into account more than just one environmental factor when assessing the effects of environmentally induced changes on phytoplankton sterol concentrations. KW - algae KW - Chlorophyta KW - Cryptomonas KW - Cryptophyta KW - Cyclotella KW - diatoms KW - phosphorus KW - Scenedesmus KW - silicate KW - sterols KW - temperature Y1 - 2012 U6 - https://doi.org/10.1080/09670262.2012.665484 SN - 0967-0262 VL - 47 IS - 2 SP - 138 EP - 145 PB - Routledge, Taylor & Francis Group CY - Abingdon ER -