TY - JOUR A1 - Steidl, Jörg A1 - Lischeid, Gunnar A1 - Engelke, Clemens A1 - Koch, Franka T1 - The curse of the past BT - What can tile drain effluent tell us about arable field management? JF - Agriculture, Ecosystems & Environment N2 - One challenge for modern agricultural management schemes is the reduction of harmful effects on the envi-ronment, e.g. in terms of the emission of nutrients. Sampling the effluent of tile drains is a very efficient way to sample seepage water from larger areas directly underneath the main rooting zone. Time series of solute con-centration in tile drains can be linked to agricultural management data and thus indicate the efficacy of individual management measures. To that end, the weekly runoff and solute concentration were determined in long-term measurement campaigns at 25 outlets of artificial tile drains at 19 various arable fields in the German federal state of Mecklenburg-Vorpommern. The study sites were distributed within a 23,000 km(2) region and were deemed representative of intense arable land use. In addition, comprehensive meteorological and man-agement data were provided. To disentangle the different effects, monitoring data were subjected to a principal component analysis. Loadings on the prevailing principal components and spatial and temporal patterns of the component scores were considered indicative of different processes. Principal component scores were then related to meteorological and management data via random forest modelling. Hydrological conditions and weather were identified as primary driving forces for the nutrient discharge behaviour of the drain plots, as well as the nitrogen balance. In contrast, direct effects of recent agricultural management could hardly be identified. Instead, we found clear evidence of the long-term and indirect effects of agriculture on nearly all solutes. We conclude that tile drain effluent quality primarily reflected the soil-internal mobilisation or de-mobilisation of nutrients and related solutes rather than allowing inferences to be drawn about recent individual agricultural management measures. On the other hand, principal component analysis revealed a variety of indirect and long-term effects of fertilisation on solutes other than nitrogen or phosphorus that are still widely overlooked in nutrient turnover studies. KW - Agricultural management KW - Tile drains KW - Nitrate KW - Phosphorus KW - Water KW - pollution KW - Multivariate statistics KW - Random forest modelling Y1 - 2021 U6 - https://doi.org/10.1016/j.agee.2021.107787 SN - 0167-8809 SN - 1873-2305 VL - 326 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Musolff, Andreas A1 - Schmidt, Christian A1 - Rode, Michael A1 - Lischeid, Gunnar A1 - Weise, Stephan M. A1 - Fleckenstein, Jan H. T1 - Groundwater head controls nitrate export from an agricultural lowland catchment JF - Advances in water resources N2 - Solute concentration variability is of fundamental importance for the chemical and ecological state of streams. It is often closely related to discharge variability and can be characterized in terms of a solute export regime. Previous studies, especially in lowland catchments, report that nitrate is often exported with an accretion pattern of increasing concentrations with increasing discharge. Several modeling approaches exist to predict the export regime of solutes from the spatial relationship of discharge generating zones with solute availability in the catchment. For a small agriculturally managed lowland catchment in central Germany, we show that this relationship is controlled by the depth to groundwater table and its temporal dynamics. Principal component analysis of groundwater level time series from wells distributed throughout the catchment allowed derivation of a representative groundwater level time series that explained most of the discharge variability. Groundwater sampling revealed consistently decreasing nitrate concentrations with an increasing thickness of the unsaturated zone. The relationships of depth to groundwater table to discharge and to nitrate concentration were parameterized and integrated to successfully model catchment discharge and nitrate export on the basis of groundwater level variations alone. This study shows that intensive and uniform agricultural land use likely results in a clear and consistent concentration-depth relationship of nitrate, which can be utilized in simple approaches to predict stream nitrate export dynamics at the catchment scale. (C) 2016 Elsevier Ltd. All rights reserved. KW - Water quality KW - Nitrate KW - Lowland catchment KW - Export regime KW - Concentration-discharge relationship Y1 - 2016 U6 - https://doi.org/10.1016/j.advwatres.2016.07.003 SN - 0309-1708 SN - 1872-9657 VL - 96 SP - 95 EP - 107 PB - Elsevier CY - Oxford ER -