TY - JOUR A1 - Hijazi, Saddam A1 - Freitag, Melina A. A1 - Landwehr, Niels T1 - POD-Galerkin reduced order models and physics-informed neural networks for solving inverse problems for the Navier-Stokes equations JF - Advanced modeling and simulation in engineering sciences : AMSES N2 - We present a Reduced Order Model (ROM) which exploits recent developments in Physics Informed Neural Networks (PINNs) for solving inverse problems for the Navier-Stokes equations (NSE). In the proposed approach, the presence of simulated data for the fluid dynamics fields is assumed. A POD-Galerkin ROM is then constructed by applying POD on the snapshots matrices of the fluid fields and performing a Galerkin projection of the NSE (or the modified equations in case of turbulence modeling) onto the POD reduced basis. A POD-Galerkin PINN ROM is then derived by introducing deep neural networks which approximate the reduced outputs with the input being time and/or parameters of the model. The neural networks incorporate the physical equations (the POD-Galerkin reduced equations) into their structure as part of the loss function. Using this approach, the reduced model is able to approximate unknown parameters such as physical constants or the boundary conditions. A demonstration of the applicability of the proposed ROM is illustrated by three cases which are the steady flow around a backward step, the flow around a circular cylinder and the unsteady turbulent flow around a surface mounted cubic obstacle. KW - Proper orthogonal decomposition KW - Inverse problems KW - Physics-based machine learning KW - Navier-Stokes equations Y1 - 2023 U6 - https://doi.org/10.1186/s40323-023-00242-2 SN - 2213-7467 VL - 10 IS - 1 PB - SpringerOpen CY - Berlin ER - TY - JOUR A1 - Shlapunov, Alexander A1 - Tarchanov, Nikolaj Nikolaevič T1 - An open mapping theorem for the Navier-Stokes type equations associated with the de Rham complex over R-n JF - Siberian electronic mathematical reports = Sibirskie ėlektronnye matematičeskie izvestija N2 - We consider an initial problem for the Navier-Stokes type equations associated with the de Rham complex over R-n x[0, T], n >= 3, with a positive time T. We prove that the problem induces an open injective mappings on the scales of specially constructed function spaces of Bochner-Sobolev type. In particular, the corresponding statement on the intersection of these classes gives an open mapping theorem for smooth solutions to the Navier-Stokes equations. KW - Navier-Stokes equations KW - de Rham complex KW - open mapping theorem Y1 - 2021 U6 - https://doi.org/10.33048/semi.2021.18.108 SN - 1813-3304 VL - 18 IS - 2 SP - 1433 EP - 1466 PB - Institut Matematiki Imeni S. L. Soboleva CY - Novosibirsk ER - TY - JOUR A1 - Mera, Azal A1 - Stepanenko, Vitaly A. A1 - Tarkhanov, Nikolai Nikolaevich T1 - Successive approximation for the inhomogeneous burgers equation JF - Journal of Siberian Federal University : Mathematics & Physics N2 - The inhomogeneous Burgers equation is a simple form of the Navier-Stokes equations. From the analytical point of view, the inhomogeneous form is poorly studied, the complete analytical solution depending closely on the form of the nonhomogeneous term. KW - Navier-Stokes equations KW - classical solution Y1 - 2018 U6 - https://doi.org/10.17516/1997-1397-2018-11-4-519-531 SN - 1997-1397 SN - 2313-6022 VL - 11 IS - 4 SP - 519 EP - 531 PB - Siberian Federal University CY - Krasnoyarsk ER - TY - JOUR A1 - Mera, Azal A1 - Shlapunov, Alexander A. A1 - Tarkhanov, Nikolai Nikolaevich T1 - Navier-Stokes Equations for Elliptic Complexes JF - Journal of Siberian Federal University. Mathematics & Physics N2 - We continue our study of invariant forms of the classical equations of mathematical physics, such as the Maxwell equations or the Lam´e system, on manifold with boundary. To this end we interpret them in terms of the de Rham complex at a certain step. On using the structure of the complex we get an insight to predict a degeneracy deeply encoded in the equations. In the present paper we develop an invariant approach to the classical Navier-Stokes equations. KW - Navier-Stokes equations KW - classical solution Y1 - 2019 U6 - https://doi.org/10.17516/1997-1397-2019-12-1-3-27 SN - 1997-1397 SN - 2313-6022 VL - 12 IS - 1 SP - 3 EP - 27 PB - Sibirskij Federalʹnyj Universitet CY - Krasnojarsk ER -