TY - JOUR A1 - Korte, Andreas A1 - Tiberius, Victor A1 - Brem, Alexander T1 - Internet of Things (IoT) technology research in business and management literature BT - results from a co-citation analysis JF - Journal of theoretical and applied electronic commerce research N2 - In coherence with the progressive digitalization of all areas of life, the Internet of Things (IoT) is a flourishing concept in both research and practice. Due to the increasing scholarly attention, the literature landscape has become scattered and fragmented. With a focus on the commercial application of the IoT and corresponding research, we employ a co-citation analysis and literature review to structure the field. We find and describe 19 research themes. To consolidate the extant research, we propose a research framework, which is based on a theoretical implementation process of IoT as a concept, specific IoT applications, or architectures integrated in an adapted input–process–output model. The main variables of the model are an initial definition and conceptualization of an IoT concept (input), which goes through an evaluation process (process), before it is implemented and can have an impact in practice (output). The paper contributes to interdisciplinary research relating to a business and management perspective on IoT by providing a holistic overview of predominant research themes and an integrative research framework. KW - bibliometric analysis KW - business KW - co-citation analysis KW - Internet of Things KW - IoT KW - management Y1 - 2021 U6 - https://doi.org/10.3390/jtaer16060116 SN - 0718-1876 VL - 16 IS - 6 SP - 2073 EP - 2090 PB - MPDI CY - Basel ER - TY - JOUR A1 - Neumann, Daniel A1 - Tiberius, Victor A1 - Biendarra, Florin T1 - Adopting wearables to customize health insurance contributions BT - a ranking-type Delphi JF - BMC medical informatics and decision making N2 - Background Wearables, as small portable computer systems worn on the body, can track user fitness and health data, which can be used to customize health insurance contributions individually. In particular, insured individuals with a healthy lifestyle can receive a reduction of their contributions to be paid. However, this potential is hardly used in practice. Objective This study aims to identify which barrier factors impede the usage of wearables for assessing individual risk scores for health insurances, despite its technological feasibility, and to rank these barriers according to their relevance. Methods To reach these goals, we conduct a ranking-type Delphi study with the following three stages. First, we collected possible barrier factors from a panel of 16 experts and consolidated them to a list of 11 barrier categories. Second, the panel was asked to rank them regarding their relevance. Third, to enhance the panel consensus, the ranking was revealed to the experts, who were then asked to re-rank the barriers. Results The results suggest that regulation is the most important barrier. Other relevant barriers are false or inaccurate measurements and application errors caused by the users. Additionally, insurers could lack the required technological competence to use the wearable data appropriately. Conclusion A wider use of wearables and health apps could be achieved through regulatory modifications, especially regarding privacy issues. Even after assuring stricter regulations, users’ privacy concerns could partly remain, if the data exchange between wearables manufacturers, health app providers, and health insurers does not become more transparent. KW - Delphi study KW - Health insurance KW - Wearable electronic device KW - Wearable technology KW - Internet of Things KW - Barriers Y1 - 2022 U6 - https://doi.org/10.1186/s12911-022-01851-4 SN - 1472-6947 VL - 22 SP - 1 EP - 7 PB - Springer Nature CY - London ER - TY - CHAP A1 - Gronau, Norbert A1 - Grum, Marcus A1 - Bender, Benedict T1 - Determining the optimal level of autonomy in cyber-physical production systems T2 - IEEE 14th International Conference on Industrial Informatics (INDIN) N2 - Traditional production systems are enhanced by cyber-physical systems (CPS) and Internet of Things. A kind of next generation systems, those cyber-physical production systems (CPPS) are able to raise the level of autonomy of its production components. To find the optimal degree of autonomy in a given context, a research approach is formulated using a simulation concept. Based on requirements and assumptions, a cyber-physical market is modeled and qualitative hypotheses are formulated, which will be verified with the help of the CPPS of a hybrid simulation environment. KW - cyber-physical systems KW - hybrid simulation KW - Internet of Things KW - manufacturing systems KW - production engineering computing KW - cyber-physical production systems Y1 - 2017 U6 - https://doi.org/10.1109/INDIN.2016.7819367 SP - 1293 EP - 1299 PB - IEEE CY - New York ER - TY - GEN A1 - Sahlmann, Kristina A1 - Scheffler, Thomas A1 - Schnor, Bettina T1 - Ontology-driven Device Descriptions for IoT Network Management T2 - 2018 Global Internet of Things Summit (GIoTS) N2 - One particular challenge in the Internet of Things is the management of many heterogeneous things. The things are typically constrained devices with limited memory, power, network and processing capacity. Configuring every device manually is a tedious task. We propose an interoperable way to configure an IoT network automatically using existing standards. The proposed NETCONF-MQTT bridge intermediates between the constrained devices (speaking MQTT) and the network management standard NETCONF. The NETCONF-MQTT bridge generates dynamically YANG data models from the semantic description of the device capabilities based on the oneM2M ontology. We evaluate the approach for two use cases, i.e. describing an actuator and a sensor scenario. KW - Internet of Things KW - Interoperability KW - oneM2M KW - Ontology KW - Semantic Web KW - NETCONF KW - YANG KW - MQTT Y1 - 2018 SN - 978-1-5386-6451-3 U6 - https://doi.org/10.1109/GIOTS.2018.8534569 SP - 295 EP - 300 PB - IEEE CY - New York ER - TY - GEN A1 - Sahlmann, Kristina A1 - Schwotzer, Thomas T1 - Ontology-based virtual IoT devices for edge computing T2 - Proceedings of the 8th International Conference on the Internet of Things N2 - An IoT network may consist of hundreds heterogeneous devices. Some of them may be constrained in terms of memory, power, processing and network capacity. Manual network and service management of IoT devices are challenging. We propose a usage of an ontology for the IoT device descriptions enabling automatic network management as well as service discovery and aggregation. Our IoT architecture approach ensures interoperability using existing standards, i.e. MQTT protocol and SemanticWeb technologies. We herein introduce virtual IoT devices and their semantic framework deployed at the edge of network. As a result, virtual devices are enabled to aggregate capabilities of IoT devices, derive new services by inference, delegate requests/responses and generate events. Furthermore, they can collect and pre-process sensor data. These tasks on the edge computing overcome the shortcomings of the cloud usage regarding siloization, network bandwidth, latency and speed. We validate our proposition by implementing a virtual device on a Raspberry Pi. KW - Internet of Things KW - Edge Computing KW - oneM2M Ontology KW - M2M KW - Semantic Interoperability KW - MQTT Y1 - 2018 SN - 978-1-4503-6564-2 U6 - https://doi.org/10.1145/3277593.3277597 SP - 1 EP - 7 PB - Association for Computing Machinery CY - New York ER - TY - GEN A1 - Hesse, Günter A1 - Matthies, Christoph A1 - Sinzig, Werner A1 - Uflacker, Matthias T1 - Adding Value by Combining Business and Sensor Data BT - an Industry 4.0 Use Case T2 - Database Systems for Advanced Applications N2 - Industry 4.0 and the Internet of Things are recent developments that have lead to the creation of new kinds of manufacturing data. Linking this new kind of sensor data to traditional business information is crucial for enterprises to take advantage of the data’s full potential. In this paper, we present a demo which allows experiencing this data integration, both vertically between technical and business contexts and horizontally along the value chain. The tool simulates a manufacturing company, continuously producing both business and sensor data, and supports issuing ad-hoc queries that answer specific questions related to the business. In order to adapt to different environments, users can configure sensor characteristics to their needs. KW - Industry 4.0 KW - Internet of Things KW - Data integration Y1 - 2019 SN - 978-3-030-18590-9 SN - 978-3-030-18589-3 U6 - https://doi.org/10.1007/978-3-030-18590-9_80 SN - 0302-9743 SN - 1611-3349 VL - 11448 SP - 528 EP - 532 PB - Springer CY - Cham ER - TY - JOUR A1 - Sahlmann, Kristina A1 - Clemens, Vera A1 - Nowak, Michael A1 - Schnor, Bettina T1 - MUP BT - Simplifying Secure Over-The-Air Update with MQTT for Constrained IoT Devices JF - Sensors N2 - Message Queuing Telemetry Transport (MQTT) is one of the dominating protocols for edge- and cloud-based Internet of Things (IoT) solutions. When a security vulnerability of an IoT device is known, it has to be fixed as soon as possible. This requires a firmware update procedure. In this paper, we propose a secure update protocol for MQTT-connected devices which ensures the freshness of the firmware, authenticates the new firmware and considers constrained devices. We show that the update protocol is easy to integrate in an MQTT-based IoT network using a semantic approach. The feasibility of our approach is demonstrated by a detailed performance analysis of our prototype implementation on a IoT device with 32 kB RAM. Thereby, we identify design issues in MQTT 5 which can help to improve the support of constrained devices. KW - Internet of Things KW - security KW - firmware update KW - MQTT KW - edge computing Y1 - 2020 U6 - https://doi.org/10.3390/s21010010 SN - 1424-8220 VL - 21 IS - 1 PB - MDPI CY - Basel ER -