TY - JOUR A1 - Koç, Gamze A1 - Natho, Stephanie A1 - Thieken, Annegret T1 - Estimating direct economic impacts of severe flood events in Turkey (2015-2020) JF - International journal of disaster risk reduction : IJDRR N2 - Over the past decades, floods have caused significant financial losses in Turkey, amounting to US$ 800 million between 1960 and 2014. With the Sendai Framework for Disaster Risk Reduction 2015-2030 (SFDRR), it is aimed to reduce the direct economic loss from disasters in relation to the global gross domestic product (GDP) by 2030. Accordingly, a methodology based on experiences from developing countries was proposed by the United Nations Office for Disaster Risk Reduction (UNDRR) to estimate direct economic losses on the macro-scale. Since Turkey also signed the SFDRR, we aimed to adapt, validate and apply the loss estimation model proposed by the UNDRR in Turkey for the first time. To do so, the well-documented flood event in Mersin of 2016 was used to calibrate the damage ratios for the agricultural, commercial and residential sectors, as well as educational facilities. Case studies between 2015 and 2020 with documented losses were further used to validate the model. Finally, model applications provided initial loss estimates for floods occurred recently in Turkey. Despite the limited event documentation for each sector, the calibrated model yielded good results when compared to documented losses. Thus, by implementing the UNDRR method, this study provides an approach to estimate the direct economic losses in Turkey on the macro-scale, which can be used to fill gaps in event databases, support the coordination of financial aid after flood events and facilitate monitoring of the progress toward and achievement of Global Target C of the Sendai Framework for Disaster Risk Reduction 2015-2030. KW - Direct economic loss KW - Flood KW - Turkey KW - Event documentation KW - UNISDR KW - Loss KW - modelling Y1 - 2021 U6 - https://doi.org/10.1016/j.ijdrr.2021.102222 SN - 2212-4209 VL - 58 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Nied, Manuela A1 - Schröter, Kai A1 - Lüdtke, Stefan A1 - Nguyen, Viet Dung A1 - Merz, Bruno T1 - What are the hydro-meteorological controls on flood characteristics? JF - Journal of hydrology N2 - Flood events can be expressed by a variety of characteristics such as flood magnitude and extent, event duration or incurred loss. Flood estimation and management may benefit from understanding how the different flood characteristics relate to the hydrological catchment conditions preceding the event and to the meteorological conditions throughout the event. In this study, we therefore propose a methodology to investigate the hydro-meteorological controls on different flood characteristics, based on the simulation of the complete flood risk chain from the flood triggering precipitation event, through runoff generation in the catchment, flood routing and possible inundation in the river system and floodplains to flood loss. Conditional cumulative distribution functions and regression tree analysis delineate the seasonal varying flood processes and indicate that the effect of the hydrological pre-conditions, i.e. soil moisture patterns, and of the meteorological conditions, i.e. weather patterns, depends on the considered flood characteristic. The methodology is exemplified for the Elbe catchment. In this catchment, the length of the build-up period, the event duration and the number of gauges undergoing at least a 10-year flood are governed by weather patterns. The affected length and the number of gauges undergoing at least a 2-year flood are however governed by soil moisture patterns. In case of flood severity and loss, the controlling factor is less pronounced. Severity is slightly governed by soil moisture patterns whereas loss is slightly governed by weather patterns. The study highlights that flood magnitude and extent arise from different flood generation processes and concludes that soil moisture patterns as well as weather patterns are not only beneficial to inform on possible flood occurrence but also on the involved flood processes and resulting flood characteristics. KW - Flood KW - Flood duration KW - Flood magnitude KW - Flood loss KW - Soil moisture patterns KW - Antecedent conditions KW - Weather patterns KW - Large basins Y1 - 2017 U6 - https://doi.org/10.1016/j.jhydrol.2016.12.003 SN - 0022-1694 SN - 1879-2707 VL - 545 SP - 310 EP - 326 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Natho, Stephanie A1 - Thieken, Annegret T1 - Implementation and adaptation of a macro-scale method to assess and monitor direct economic losses caused by natural hazards JF - International Journal of Disaster Risk Reduction N2 - As one of the 195 member countries of the United Nations, Germany signed the Sendai Framework for Disaster Risk Reduction 2015-2030 (SFDRR). Among other targets, the SFDRR aims at reducing direct economic losses caused by natural hazards by 2030. The United Nations Office for Disaster Risk Reduction (UNISDR) has hence proposed a methodology for estimating direct economic losses per event and country, based on experiences from developing countries. Since its usability in industrialized countries is unknown, this study presents the first implementation and validation of this approach in Germany. The methodology was tested for the three costliest natural hazard types in Germany, i.e. floods, wind and hail storms, considering 12 case studies between 1984 and 2016. Although the event-specific input data requirements are restricted to the number of damaged or destroyed units per sector, incomplete event documentations did not allow a full validation of all sectors necessary to describe the total direct economic loss. New modules (cars, forestry, paved roads, housing contents and overall costs of urban infrastructure) were developed to better adapt this methodology to German conditions. Whereas the original UNISDR methodology both over-and underestimates the losses of the tested events by a wide margin, the adapted methodology is able to calculate losses accounting well for all event types except for flash floods. Hence, this approach serves as a good starting point for macro-scale loss estimations. By implementing this approach into damage and event documentation and reporting standards, a consistent monitoring of the SFDRR could be achieved. KW - Germany KW - Direct economic loss KW - Natural hazards KW - Flood KW - Storm KW - Hail KW - Loss modelling Y1 - 2018 U6 - https://doi.org/10.1016/j.ijdrr.2018.03.008 SN - 2212-4209 VL - 28 SP - 191 EP - 205 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Riese, Miriam A1 - Thieken, Annegret A1 - Müggenburg, Eva A1 - Bubeck, Philip T1 - Synergies and barriers of the possible integration of heavy rainfall for the implementation of the European Floods Directive JF - Hydrologie und Wasserbewirtschaftung N2 - The heavy rainfall events in recent years have caused great damage, which has increased the public awareness of the topic of heavy rainfall. For this reason, this article discusses how a systematic integration of heavy rainfall within the framework of the European Floods Directive would be possible and reasonable. For this purpose, a matrix covering possible synergies and barriers was created for all steps of the directive, which were then examined in 15 semi-structured interviews with representatives from specialized administration, the private sector and academia. Although there are some synergies, the additional effort required, especially regarding the identification of the risk areas and the higher level of detail required for risk modeling, would be so high that the European Floods Directive cannot be deemed to be an appropriate framework for heavy rainfall risk management. Nevertheless, there is a need for action, e.g. in the field of self-protection, improved risk communication to the population, combined with increased public and interagency cooperation. T2 - Synergien und Hemmnisse einer möglichen Integration von Starkregen in die Bearbeitung der europäischen Hochwasserrisikomanagementrichtlinie KW - Flood KW - heavy rainfall KW - EU Floods Directive KW - Federal Water Act KW - Hochwasser KW - Starkregen KW - Hochwasserrisikomanagementrichtlinie KW - Wasserhaushaltsgesetz Y1 - 2019 U6 - https://doi.org/10.5675/HyWa_2019.4_1 SN - 1439-1783 VL - 63 IS - 4 SP - 193 EP - 202 PB - Bundesanst. für Gewässerkunde CY - Koblenz ER - TY - JOUR A1 - Kreibich, Heidi A1 - Bubeck, Philip A1 - Van Vliet, Mathijs A1 - De Moel, Hans T1 - A review of damage-reducing measures to manage fluvial flood risks in a changing climate JF - Mitigation and adaptation strategies for global change : an international journal devoted to scientific, engineering, socio-economic and policy responses to environmental change N2 - Damage due to floods has increased during the last few decades, and further increases are expected in several regions due to climate change and growing vulnerability. To address the projected increase in flood risk, a combination of structural and non-structural flood risk mitigation measures is considered as a promising adaptation strategy. Such a combination takes into account that flood defence systems may fail, and prepares for unexpected crisis situations via land-use planning and private damage reduction, e.g. via building precautionary measures, and disaster response. However, knowledge about damage-reducing measures is scarce and often fragmented since based on case studies. For instance, it is believed that private precautionary measures, like shielding with water shutters or building fortification, are especially effective in areas with frequent flood events and low flood water levels. However, some of these measures showed a significant damage-reducing effect also during the extreme flood event in 2002 in Germany. This review analyses potentials of land-use planning and private flood precautionary measures as components of adaptation strategies for global change. Focus is on their implementation, their damage-reducing effects and their potential contribution to address projected changes in flood risk, particularly in developed countries. KW - Climate adaptation KW - Land-use planning KW - Damage reduction KW - Precaution KW - Risk zoning KW - Flood Y1 - 2015 U6 - https://doi.org/10.1007/s11027-014-9629-5 SN - 1381-2386 SN - 1573-1596 VL - 20 IS - 6 SP - 967 EP - 989 PB - Springer CY - Dordrecht ER -