TY - JOUR A1 - Zapata, Sebastian Henao A1 - Cardona, A. A1 - Jaramillo, J. S. A1 - Patino, A. A1 - Valencia, V. A1 - Leon, S. A1 - Mejia, D. A1 - Pardo-Trujillo, A. A1 - Castaneda, J. P. T1 - Cretaceous extensional and compressional tectonics in the Northwestern Andes, prior to the collision with the Caribbean oceanic plateau JF - Gondwana research : international geoscience journal ; official journal of the International Association for Gondwana Research N2 - The Cretaceous units exposed in the northwestern segment of the Colombian Andes preserve the record of extensional and compressional tectonics prior to the collision with Caribbean oceanic terranes. We integrated field, stratigraphic, sedimentary provenance, whole rock geochemistry, Nd isotopes and U-Pb zircon data to understand the Cretaceous tectonostratigraphic and magmatic record of the Colombian Andes. The results suggest that several sedimentary successions including the Abejorral Fm. were deposited on top of the continental basement in an Early Cretaceous backarc basin (150-100 Ma). Between 120 and 100 Ma, the appearance of basaltic and andesitic magmatism (similar to 115-100 Ma), basin deepening, and seafloor spreading were the result of advanced stages of backarc extension. A change to compressional tectonics took place during the Late Cretaceous (100-80 Ma). During this compressional phase, the extended blocks were reincorporated into the margin, closing the former Early Cretaceous backarc basin. Subsequently, a Late Cretaceous volcanic arc was built on the continental margin: as a result, the volcanic rocks of the Quebradagrande Complex were unconformably deposited on top of the faulted and folded rocks of the Abejorral Fm. Between the Late Cretaceous and the Paleocene (80-60 Ma), an arc-continent collision between the Caribbean oceanic plateau and the South-American continental margin deformed the rocks of the Quebradagrande Complex and shut-down the active volcanic arc. Our results suggest an Early Cretaceous extensional event followed by compressional tectonics prior to the collision with the Caribbean oceanic plateau. (C) 2019 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved. KW - Northern Andes KW - Paleogeography KW - Cretaceous KW - Extension KW - Convergent margins KW - Provenance Y1 - 2018 U6 - https://doi.org/10.1016/j.gr.2018.10.008 SN - 1342-937X SN - 1878-0571 VL - 66 SP - 207 EP - 226 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Aminov, Jovid A1 - Ding, Lin A1 - Mamadjonov, Yunus A1 - Dupont-Nivet, Guillaume A1 - Aminov, Jamshed A1 - Zhang, Li-Yun A1 - Yoqubov, Shokirjon A1 - Aminov, Javhar A1 - Abdulov, Sherzod T1 - Pamir Plateau formation and crustal thickening before the India-Asia collision inferred from dating and petrology of the 110-92 Ma Southern Pamir volcanic sequence JF - Gondwana research : international geoscience journal ; official journal of the International Association for Gondwana Research N2 - The formation of the Pamir is a key component of the India-Asia collision with major implications for lithospheric processes, plateau formation, land-sea configurations and associated climate changes. Although the formation of the Pamir is traditionally linked to Cenozoic processes associated with the India-Asia collision, the contribution of the Mesozoic tectonic evolution remains poorly understood. The Pamir was formed by the suturing of Gondwanan terranes to the south margin of Eurasia, however, the timing and tectonic mechanisms associated with this Mesozoic accretion remain poorly constrained. These processes are recorded by several igneous belts within these terranes, which are not well studied. Within the Southern Pamir, the Albian-Turonian volcanic rocks and comagmatic plutons of the Kyzylrabat Igneous Complex (KIC) provide an important and still unconstrained record of the Pamir evolution. Here we provide the age, origin and the geodynamic setting of the KIC volcanics by studying their petrology, zircon U-Pb geochronology, geochemistry and isotope composition.17 samples from the KIC volcanics yield U-Pb ages spanning from 92 to 110 Ma. The volcanics are intermediate to acidic in composition (SiO2 = 56-69 wt%) and exhibit high-K calc-alkaline and shoshonitic affinity (K2O/Na2O = 12.2 wt%). They show enrichment in LILE and LREE and depletion in HFSE and HREE with negative Ta, Ti and Nb anomalies, suggesting an arc-related tectonic setting for their formation. Low sNd(t) values (from 9.1 to 4.7), relatively high Sr-87/Sr-86(i) ratios (0.7069-0.7096) and broad range of zircon stif values (from 22.6 to 1.5) suggest a mixture of different magma sources. These features suggest that volcanics were derived by crustal under- or intraplating of an enriched subduction-related mantle shoshonitic magmas, by heating and partial melting of the lower crust, and by mixing of both magma components. Our results further imply that the KIC volcanics represent a shoshonitic suite typical of an evolution from active continental arc to post-collisional setting with a steepening of the Benioff zone and thickening of the crust toward the back-arc. This setting is best explained by the subduction- collision transition along the Shyok suture due to accretion of the Kohistan island arc to the Karakoram. This suggests that a significant part of the crustal shortening and thickening accommodated in the Pamir occurred in the Mesozoic before the India-Asia collision with implications for regional tectonic models. This further suggests the Pamir was already a major topographic feature with potentially important paleoclimate forcing such as the monsoonal circulation. (C) 2017 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved. KW - Southern Pamir KW - Cretaceous KW - Volcanic rocks KW - Geochemistry KW - Geochronology KW - Petrogenesis Y1 - 2017 U6 - https://doi.org/10.1016/j.gr.2017.08.003 SN - 1342-937X SN - 1878-0571 VL - 51 SP - 310 EP - 326 PB - Elsevier CY - Amsterdam ER -