TY - THES A1 - Trauth, Nico T1 - Flow and reactive transport modeling at the stream-groundwater interface T1 - Strömungs- und reaktive Stofftransportmodellierung an der Schnittstelle Fluss-Grundwasser BT - effects of hydrological conditions and streambed morphology BT - Einfluss der hydrologischen Bedingungen und der Flussbettmorphologie N2 - Stream water and groundwater are important fresh water resources but their water quality is deteriorated by harmful solutes introduced by human activities. The interface between stream water and the subsurface water is an important zone for retention, transformation and attenuation of these solutes. Streambed structures enhance these processes by increased water and solute exchange across this interface, denoted as hyporheic exchange. This thesis investigates the influence of hydrological and morphological factors on hyporheic water and solute exchange as well as redox-reactions in fluvial streambed structures on the intermediate scale (10–30m). For this purpose, a three-dimensional numerical modeling approach for coupling stream water flow with porous media flow is used. Multiple steady state stream water flow scenarios over different generic pool-riffle morphologies and a natural in-stream gravel bar are simulated by a computational fluid dynamics code that provides the hydraulic head distribution at the streambed. These heads are subsequently used as the top boundary condition of a reactive transport groundwater model of the subsurface beneath the streambed. Ambient groundwater that naturally interacts with the stream water is considered in scenarios of different magnitudes of downwelling stream water (losing case) and upwelling groundwater (gaining case). Also, the neutral case, where stream stage and groundwater levels are balanced is considered. Transport of oxygen, nitrate and dissolved organic carbon and their reaction by aerobic respiration and denitrification are modeled. The results show that stream stage and discharge primarily induce hyporheic exchange flux and solute transport with implications for specific residence times and reactions at both the fully and partially submerged structures. Gaining and losing conditions significantly diminish the extent of the hyporheic zone, the water exchange flux, and shorten residence times for both the fully and partially submerged structures. With increasing magnitude of gaining or losing conditions, these metrics exponentially decrease. Stream water solutes are transported mainly advectively into the hyporheic zone and hence their influx corresponds directly to the infiltrating water flux. Aerobic respiration takes place in the shallow streambed sediments, coinciding to large parts with the extent of the hyporheic exchange flow. Denitrification occurs mainly as a “reactive fringe” surrounding the aerobic zone, where oxygen concentration is low and still a sufficient amount of stream water carbon source is available. The solute consumption rates and the efficiency of the aerobic and anaerobic reactions depend primarily on the available reactive areas and the residence times, which are both controlled by the interplay between hydraulic head distribution at the streambed and the gradients between stream stage and ambient groundwater. Highest solute consumption rates can be expected under neutral conditions, where highest solute flux, longest residence times and largest extent of the hyporheic exchange occur. The results of this thesis show that streambed structures on the intermediate scale have a significant potential to contribute to a net solute turnover that can support a healthy status of the aquatic ecosystem. N2 - Fluss- und Grundwasser sind wichtige Süßwasserressourcen, deren Qualität durch anthropogene Einträge schädlicher Stoffe vermindert wird. Im Grenzbereich zwischen Fluss- und Grundwasser können diese Stoffe zurückgehalten, umgewandelt oder abgebaut werden. Flussbettstrukturen erhöhen den sogenannten hyporheischen Austausch von Wasser und Stoffflüssen, wodurch diese Prozesse gefördert werden. In dieser Arbeit wird der Einfluss von hydrologischen und morphologischen Faktoren auf Wasser und Stoffflüsse sowie Redox-Reaktionen in Flussbettstrukturen der mittleren Skala (10–30m) untersucht. Hierfür wird ein dreidimensionales numerisches Modell-Konzept verwendet, welches die Flussströmung und die Strömung im darunter liegenden porösen Medium koppelt. Mit einer Computational Fluid Dynamics Software wird die stationäre Flussströmung über generische Pool-Riffle Strukturen sowie über eine natürliche Flussinsel für verschiedene Abflüsse simuliert. Die berechneten Drücke am Flussbett werden als Randbedingungen erster Ordnung an ein reaktives Grundwasser- und Stofftransportmodell übertragen. An der unteren bzw. seitlichen Randbedingung werden zusätzliche Gradienten erzeugt, die die Interaktion zwischen Fluss und regionalem Grundwasser als in– oder exfiltrierende Bedingungen repräsentieren. Sind Flusswasserund Grundwasserstand ausgeglichen, liegen neutrale Bedingungen vor. Im Grundwassermodell werden der Transport von Sauerstoff, Nitrat und gelöstem organischen Kohlenstoff sowie deren mögliche Reaktion durch aerobe Respiration und Denitrifikation modelliert. Die Simulationensergebnisse zeigen, dass der hyporheische Austausch durch hydraulische Gradienten am Flussbett verursacht wird. Existiert ein zusätzlicher hydraulischer Gradient zwischen Fluss- und Grundwasser, werden die ausgetauschten Wassermengen sowie die Größe der hyporheischen Zone vermindert, was mit kürzeren Verweilzeiten einhergeht. Dieser Effekt ist unabhängig von der Richtung dieses Gradienten und umso ausgeprägter, je stärker der Gradient zwischen dem Grundwasser und dem Flusswasserstand ist. Die im Flusswasser gelösten Stoffe werden advektiv in die hyporheische Zone transportiert. Die aerobe Respiration nimmt große Bereiche der flachen hyporheischen Zone ein. Hohe Denitrifikationsraten existieren vor allem in einem “reaktiven Saum”, der den aeroben Bereich umschließt, da hier die Sauerstoffkonzentration niedrig und ausreichend Kohlenstoff verfügbar ist. Die Raten und die Effizienz der aeroben und anaeroben Reaktionen hängen vor allem von dem für die Reaktionen verfügbaren Raum sowie den Verweilzeiten der Stoffe in der hyporheischen Zone ab. Beide Parameter werden von der Wechselwirkung zwischen den hydraulischen Gradienten entlang des Flussbettes und dem Gradienten zwischen Fluss- und Grundwasser kontrolliert. Die höchsten Zehrraten werden unter neutralen Bedingungen erreicht, wenn die Menge der infiltrierenden gelösten Stoffe am höchsten ist, die längsten Verweilzeiten auftreten und die hyporheische Zone die größte Ausbreitung aufweist. Die Ergebnisse dieser Arbeit zeigen, dass die untersuchten Flussbettstrukturen ein bedeutendes Potential für den Umsatz von Wasserinhaltsstoffen haben können, wodurch ein guter Status des aquatischen Ökosystems gefördert wird. KW - hyporheic zone KW - denitrification KW - streambed morphology KW - Computational Fluid Dynamics (CFD) KW - reactive transport groundwater model KW - hyporheische Zone KW - Denitrifikation KW - Flussbettmorphologie KW - numerische Strömungsmechanik KW - reaktives Grundwassermodell Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-82748 ER - TY - JOUR A1 - Trauth, Nico A1 - Schmidt, Christian A1 - Vieweg, Michael A1 - Oswald, Sascha Eric A1 - Fleckenstein, Jan H. T1 - Hydraulic controls of in-stream gravel bar hyporheic exchange and reactions JF - Water resources research N2 - Hyporheic exchange transports solutes into the subsurface where they can undergo biogeochemical transformations, affecting fluvial water quality and ecology. A three-dimensional numerical model of a natural in-stream gravel bar (20 m x 6 m) is presented. Multiple steady state streamflow is simulated with a computational fluid dynamics code that is sequentially coupled to a reactive transport groundwater model via the hydraulic head distribution at the streambed. Ambient groundwater flow is considered by scenarios of neutral, gaining, and losing conditions. The transformation of oxygen, nitrate, and dissolved organic carbon by aerobic respiration and denitrification in the hyporheic zone are modeled, as is the denitrification of groundwater-borne nitrate when mixed with stream-sourced carbon. In contrast to fully submerged structures, hyporheic exchange flux decreases with increasing stream discharge, due to decreasing hydraulic head gradients across the partially submerged structure. Hyporheic residence time distributions are skewed in the log-space with medians of up to 8 h and shift to symmetric distributions with increasing level of submergence. Solute turnover is mainly controlled by residence times and the extent of the hyporheic exchange flow, which defines the potential reaction area. Although streamflow is the primary driver of hyporheic exchange, its impact on hyporheic exchange flux, residence times, and solute turnover is small, as these quantities exponentially decrease under losing and gaining conditions. Hence, highest reaction potential exists under neutral conditions, when the capacity for denitrification in the partially submerged structure can be orders of magnitude higher than in fully submerged structures. KW - in-stream gravel bar KW - groundwater-surface water interaction KW - aerobic respiration KW - denitrification KW - computational fluid dynamics KW - reactive transport model Y1 - 2015 U6 - https://doi.org/10.1002/2014WR015857 SN - 0043-1397 SN - 1944-7973 VL - 51 IS - 4 SP - 2243 EP - 2263 PB - American Geophysical Union CY - Washington ER -