TY - GEN A1 - Hudson, Paul A1 - De Ruig, Lars T. A1 - De Ruiter, Marco C. A1 - Kuik, Onno J. A1 - Botzen, W. J. Wouter A1 - Le Den, X. A1 - Persson, Magnus A1 - Benoist, Anthony A1 - Nielsen, C. N. T1 - An assessment of best practices of extreme weather insurance and directions for a more resilient society T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Extreme weather resilience has been defined as being based on three pillars: resistance (the ability to lower impacts), recovery (the ability to bounce back), and adaptive capacity (the ability to learn and improve). These resilience pillars are important both before and after the occurrence of extreme weather events. Extreme weather insurance can influence these pillars of resilience depending on how particular insurance mechanisms are structured. We explore how the lessons learnt from the current best insurance practices can improve resilience to extreme weather events. We employ an extensive inventory of private property and agricultural crop insurance mechanisms to conduct a multi-criteria analysis of insurance market outcomes. We draw conclusions regarding the patterns in the best practice from six European countries to increase resilience. We suggest that requirements to buy a bundle extreme weather event insurance with general insurance packages are strengthened and supported with structures to financing losses through public-private partnerships. Moreover, support for low income households through income vouchers could be provided. Similarly, for the agricultural sector we propose moving towards comprehensive crop yield insurance linked to general agricultural subsidies. In both cases a nationally representative body can coordinate the various stakeholders into acting in concert. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 757 KW - extreme weather KW - insurance KW - resilience KW - climate change adaptation KW - risk management Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-433510 SN - 1866-8372 IS - 757 ER - TY - GEN A1 - Asgarimehr, Milad A1 - Wickert, Jens A1 - Reich, Sebastian T1 - Evaluating impact of rain attenuation on space-borne GNSS Reflectometry wind speeds T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The novel space-borne Global Navigation Satellite System Reflectometry (GNSS-R) technique has recently shown promise in monitoring the ocean state and surface wind speed with high spatial coverage and unprecedented sampling rate. The L-band signals of GNSS are structurally able to provide a higher quality of observations from areas covered by dense clouds and under intense precipitation, compared to those signals at higher frequencies from conventional ocean scatterometers. As a result, studying the inner core of cyclones and improvement of severe weather forecasting and cyclone tracking have turned into the main objectives of GNSS-R satellite missions such as Cyclone Global Navigation Satellite System (CYGNSS). Nevertheless, the rain attenuation impact on GNSS-R wind speed products is not yet well documented. Evaluating the rain attenuation effects on this technique is significant since a small change in the GNSS-R can potentially cause a considerable bias in the resultant wind products at intense wind speeds. Based on both empirical evidence and theory, wind speed is inversely proportional to derived bistatic radar cross section with a natural logarithmic relation, which introduces high condition numbers (similar to ill-posed conditions) at the inversions to high wind speeds. This paper presents an evaluation of the rain signal attenuation impact on the bistatic radar cross section and the derived wind speed. This study is conducted simulating GNSS-R delay-Doppler maps at different rain rates and reflection geometries, considering that an empirical data analysis at extreme wind intensities and rain rates is impossible due to the insufficient number of observations from these severe conditions. Finally, the study demonstrates that at a wind speed of 30 m/s and incidence angle of 30 degrees, rain at rates of 10, 15, and 20 mm/h might cause overestimation as large as approximate to 0.65 m/s (2%), 1.00 m/s (3%), and 1.3 m/s (4%), respectively, which are still smaller than the CYGNSS required uncertainty threshold. The simulations are conducted in a pessimistic condition (severe continuous rainfall below the freezing height and over the entire glistening zone) and the bias is expected to be smaller in size in real environments. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1132 KW - GNSS Reflectometry KW - wind speed KW - rain effect KW - rain attenuation KW - DDM simulation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-473441 SN - 1866-8372 IS - 1132 ER - TY - GEN A1 - Ringel, Lisa Maria A1 - Somogyvári, Márk A1 - Jalali, Mohammadreza A1 - Bayer, Peter T1 - Comparison of hydraulic and tracer tomography for discrete fracture network inversion T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Fractures serve as highly conductive preferential flow paths for fluids in rocks, which are difficult to exactly reconstruct in numerical models. Especially, in low-conductive rocks, fractures are often the only pathways for advection of solutes and heat. The presented study compares the results from hydraulic and tracer tomography applied to invert a theoretical discrete fracture network (DFN) that is based on data from synthetic cross-well testing. For hydraulic tomography, pressure pulses in various injection intervals are induced and the pressure responses in the monitoring intervals of a nearby observation well are recorded. For tracer tomography, a conservative tracer is injected in different well levels and the depth-dependent breakthrough of the tracer is monitored. A recently introduced transdimensional Bayesian inversion procedure is applied for both tomographical methods, which adjusts the fracture positions, orientations, and numbers based on given geometrical fracture statistics. The used Metropolis-Hastings-Green algorithm is refined by the simultaneous estimation of the measurement error’s variance, that is, the measurement noise. Based on the presented application to invert the two-dimensional cross-section between source and the receiver well, the hydraulic tomography reveals itself to be more suitable for reconstructing the original DFN. This is based on a probabilistic representation of the inverted results by means of fracture probabilities. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 922 KW - hydraulic tomography KW - tracer tomography KW - DFN KW - Bayesian inversion KW - heterogeneity KW - fracture KW - hydrogeophysics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-442616 SN - 1866-8372 IS - 922 ER - TY - GEN A1 - Nüsken, Nikolas A1 - Reich, Sebastian A1 - Rozdeba, Paul J. T1 - State and parameter estimation from observed signal increments T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The success of the ensemble Kalman filter has triggered a strong interest in expanding its scope beyond classical state estimation problems. In this paper, we focus on continuous-time data assimilation where the model and measurement errors are correlated and both states and parameters need to be identified. Such scenarios arise from noisy and partial observations of Lagrangian particles which move under a stochastic velocity field involving unknown parameters. We take an appropriate class of McKean–Vlasov equations as the starting point to derive ensemble Kalman–Bucy filter algorithms for combined state and parameter estimation. We demonstrate their performance through a series of increasingly complex multi-scale model systems. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 916 KW - parameter estimation KW - continuous-time data assimilation KW - ensemble Kalman filter KW - correlated noise KW - multi-scale diffusion processes Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-442609 SN - 1866-8372 IS - 916 ER - TY - GEN A1 - Grafe, Marianne A1 - Batsios, Petros A1 - Meyer, Irene A1 - Lisin, Daria A1 - Baumann, Otto A1 - Goldberg, Martin W. A1 - Gräf, Ralph T1 - Supramolecular Structures of the Dictyostelium Lamin NE81 T2 - Potsprint der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Nuclear lamins are nucleus-specific intermediate filaments (IF) found at the inner nuclear membrane (INM) of the nuclear envelope (NE). Together with nuclear envelope transmembrane proteins, they form the nuclear lamina and are crucial for gene regulation and mechanical robustness of the nucleus and the whole cell. Recently, we characterized Dictyostelium NE81 as an evolutionarily conserved lamin-like protein, both on the sequence and functional level. Here, we show on the structural level that the Dictyostelium NE81 is also capable of assembling into filaments, just as metazoan lamin filament assemblies. Using field-emission scanning electron microscopy, we show that NE81 expressed in Xenopous oocytes forms filamentous structures with an overall appearance highly reminiscent of Xenopus lamin B2. The in vitro assembly properties of recombinant His-tagged NE81 purified from Dictyostelium extracts are very similar to those of metazoan lamins. Super-resolution stimulated emission depletion (STED) and expansion microscopy (ExM), as well as transmission electron microscopy of negatively stained purified NE81, demonstrated its capability of forming filamentous structures under low-ionic-strength conditions. These results recommend Dictyostelium as a non-mammalian model organism with a well-characterized nuclear envelope involving all relevant protein components known in animal cells. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 682 KW - lamin KW - NE81 KW - Dictyostelium KW - nuclear envelope KW - nuclear lamina KW - expansion microscopy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-425976 SN - 1866-8372 IS - 682 ER - TY - GEN A1 - Schieferdecker, Anne A1 - Wendler, Petra T1 - Structural mapping of missense mutations in the Pex1/Pex6 complex T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Peroxisome biogenesis disorders (PBDs) are nontreatable hereditary diseases with a broad range of severity. Approximately 65% of patients are affected by mutations in the peroxins Pex1 and Pex6. The proteins form the heteromeric Pex1/Pex6 complex, which is important for protein import into peroxisomes. To date, no structural data are available for this AAA+ ATPase complex. However, a wealth of information can be transferred from low-resolution structures of the yeast scPex1/scPex6 complex and homologous, well-characterized AAA+ ATPases. We review the abundant records of missense mutations described in PBD patients with the aim to classify and rationalize them by mapping them onto a homology model of the human Pex1/Pex6 complex. Several mutations concern functionally conserved residues that are implied in ATP hydrolysis and substrate processing. Contrary to fold destabilizing mutations, patients suffering from function-impairing mutations may not benefit from stabilizing agents, which have been reported as potential therapeutics for PBD patients. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1072 KW - Zellweger syndrome spectrum disorder (ZSSD) KW - Zellweger KW - structure KW - Pex1 KW - Pex6 KW - mutation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-472843 SN - 1866-8372 IS - 1072 ER - TY - GEN A1 - Ayzel, Georgy A1 - Izhitskiy, Alexander T1 - Climate change impact assessment on freshwater inflow into the Small Aral Sea T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - During the last few decades, the rapid separation of the Small Aral Sea from the isolated basin has changed its hydrological and ecological conditions tremendously. In the present study, we developed and validated the hybrid model for the Syr Darya River basin based on a combination of state-of-the-art hydrological and machine learning models. Climate change impact on freshwater inflow into the Small Aral Sea for the projection period 2007–2099 has been quantified based on the developed hybrid model and bias corrected and downscaled meteorological projections simulated by four General Circulation Models (GCM) for each of three Representative Concentration Pathway scenarios (RCP). The developed hybrid model reliably simulates freshwater inflow for the historical period with a Nash–Sutcliffe efficiency of 0.72 and a Kling–Gupta efficiency of 0.77. Results of the climate change impact assessment showed that the freshwater inflow projections produced by different GCMs are misleading by providing contradictory results for the projection period. However, we identified that the relative runoff changes are expected to be more pronounced in the case of more aggressive RCP scenarios. The simulated projections of freshwater inflow provide a basis for further assessment of climate change impacts on hydrological and ecological conditions of the Small Aral Sea in the 21st Century. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1071 KW - Small Aral Sea KW - hydrology KW - climate change KW - modeling KW - machine learning Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-472794 SN - 1866-8372 IS - 1071 ER - TY - GEN A1 - López de Guereñu, Anna A1 - Bastian, Philipp A1 - Wessig, Pablo A1 - John, Leonard A1 - Kumke, Michael Uwe T1 - Energy transfer between tm-doped upconverting nanoparticles and a small organic dye with large stokes shift T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Lanthanide-doped upconverting nanoparticles (UCNP) are being extensively studied for bioapplications due to their unique photoluminescence properties and low toxicity. Interest in RET applications involving UCNP is also increasing, but due to factors such as large sizes, ion emission distributions within the particles, and complicated energy transfer processes within the UCNP, there are still many questions to be answered. In this study, four types of core and core-shell NaYF4-based UCNP co-doped with Yb3+ and Tm3+ as sensitizer and activator, respectively, were investigated as donors for the Methyl 5-(8-decanoylbenzo[1,2-d:4,5-d ']bis([1,3]dioxole)-4-yl)-5-oxopentanoate (DBD-6) dye. The possibility of resonance energy transfer (RET) between UCNP and the DBD-6 attached to their surface was demonstrated based on the comparison of luminescence intensities, band ratios, and decay kinetics. The architecture of UCNP influenced both the luminescence properties and the energy transfer to the dye: UCNP with an inert shell were the brightest, but their RET efficiency was the lowest (17%). Nanoparticles with Tm3+ only in the shell have revealed the highest RET efficiencies (up to 51%) despite the compromised luminescence due to surface quenching. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 961 KW - resonance energy transfer KW - DBD dye KW - core shell UCNP KW - time-resolved luminescence Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-472240 SN - 1866-8372 IS - 961 ER - TY - GEN A1 - Schönemann, Eric A1 - Laschewsky, André A1 - Wischerhoff, Erik A1 - Koc, Julian A1 - Rosenhahn, Axel T1 - Surface modification by polyzwitterions of the sulfabetaine-type, and their resistance to biofouling T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Films of zwitterionic polymers are increasingly explored for conferring fouling resistance to materials. Yet, the structural diversity of polyzwitterions is rather limited so far, and clear structure-property relationships are missing. Therefore, we synthesized a series of new polyzwitterions combining ammonium and sulfate groups in their betaine moieties, so-called poly(sulfabetaine)s. Their chemical structures were varied systematically, the monomers carrying methacrylate, methacrylamide, or styrene moieties as polymerizable groups. High molar mass homopolymers were obtained by free radical polymerization. Although their solubilities in most solvents were very low, brine and lower fluorinated alcohols were effective solvents in most cases. A set of sulfabetaine copolymers containing about 1 mol % (based on the repeat units) of reactive benzophenone methacrylate was prepared, spin-coated onto solid substrates, and photo-cured. The resistance of these films against the nonspecific adsorption by two model proteins (bovine serum albumin—BSA, fibrinogen) was explored, and directly compared with a set of references. The various polyzwitterions reduced protein adsorption strongly compared to films of poly(n-butyl methacrylate) that were used as a negative control. The poly(sulfabetaine)s showed generally even somewhat higher anti-fouling activity than their poly(sulfobetaine) analogues, though detailed efficacies depended on the individual polymer–protein pairs. Best samples approach the excellent performance of a poly(oligo(ethylene oxide) methacrylate) reference. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 919 KW - polyzwitterion KW - sulfabetaine KW - sulfobetaine KW - polymer thin films KW - photo crosslinking KW - C,H insertion crosslinking (CHic) KW - protein adsorption KW - anti-fouling materials Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-442007 SN - 1866-8372 IS - 919 ER - TY - GEN A1 - Hargis, Hailey A1 - Gotsch, Sybil G. A1 - Porada, Philipp A1 - Moore, Georgianne W. A1 - Ferguson, Briana A1 - Van Stan II, John T. T1 - Arboreal epiphytes in the soil-atmosphere interface BT - how often are the biggest “buckets” in the canopy empty? T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Arboreal epiphytes (plants residing in forest canopies) are present across all major climate zones and play important roles in forest biogeochemistry. The substantial water storage capacity per unit area of the epiphyte “bucket” is a key attribute underlying their capability to influence forest hydrological processes and their related mass and energy flows. It is commonly assumed that the epiphyte bucket remains saturated, or near-saturated, most of the time; thus, epiphytes (particularly vascular epiphytes) can store little precipitation, limiting their impact on the forest canopy water budget. We present evidence that contradicts this common assumption from (i) an examination of past research; (ii) new datasets on vascular epiphyte and epi-soil water relations at a tropical montane cloud forest (Monteverde, Costa Rica); and (iii) a global evaluation of non-vascular epiphyte saturation state using a process-based vegetation model, LiBry. All analyses found that the external and internal water storage capacity of epiphyte communities is highly dynamic and frequently available to intercept precipitation. Globally, non-vascular epiphytes spend <20% of their time near saturation and regionally, including the humid tropics, model results found that non-vascular epiphytes spend ~1/3 of their time in the dry state (0–10% of water storage capacity). Even data from Costa Rican cloud forest sites found the epiphyte community was saturated only 1/3 of the time and that internal leaf water storage was temporally dynamic enough to aid in precipitation interception. Analysis of the epi-soils associated with epiphytes further revealed the extent to which the epiphyte bucket emptied—as even the canopy soils were often <50% saturated (29–53% of all days observed). Results clearly show that the epiphyte bucket is more dynamic than currently assumed, meriting further research on epiphyte roles in precipitation interception, redistribution to the surface and chemical composition of “net” precipitation waters reaching the surface. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 928 KW - precipitation KW - interception KW - bromeliad KW - vascular epiphyte KW - non-vascular epiphyte KW - lichens KW - bryophytes KW - water storage capacity Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441993 SN - 1866-8372 IS - 928 ER -