TY - JOUR A1 - Mei, Shilin A1 - Jafta, Charl J. A1 - Lauermann, Iver A1 - Ran, Qidi A1 - Kaergell, Martin A1 - Ballauff, Matthias A1 - Lu, Yan T1 - Porous Ti4O7 Particles with Interconnected-Pore Structure as a High-Efficiency Polysulfide Mediator for Lithium-Sulfur Batteries JF - Advanced functional materials N2 - Multifunctional Ti4O7 particles with interconnected-pore structure are designed and synthesized using porous poly(styrene-b-2-vinylpyridine) particles as a template. The particles can work efficiently as a sulfur-host material for lithium-sulfur batteries. Specifically, the well-defined porous Ti4O7 particles exhibit interconnected pores in the interior and have a high-surface area of 592 m(2) g(-1); this shows the advantage of mesopores for encapsulating of sulfur and provides a polar surface for chemical binding with polysulfides to suppress their dissolution. Moreover, in order to improve the conductivity of the electrode, a thin layer of carbon is coated on the Ti4O7 surface without destroying its porous structure. The porous Ti4O7 and carbon-coated Ti4O7 particles show significantly improved electrochemical performances as cathode materials for Li-S batteries as compared with those of TiO2 particles. KW - lithium-sulfur batteries KW - porous particles KW - poly(styrene-b-2-vinylpyridine) (PS-P2VP) KW - Ti4O7 Y1 - 2017 U6 - https://doi.org/10.1002/adfm.201701176 SN - 1616-301X SN - 1616-3028 VL - 27 PB - Wiley-VCH CY - Weinheim ER -