TY - THES A1 - Martinez-Seidel, Federico T1 - Ribosome Heterogeneity and Specialization during Temperature Acclimation in Plants N2 - Ribosomes decode mRNA to synthesize proteins. Ribosomes, once considered static, executing machines, are now viewed as dynamic modulators of translation. Increasingly detailed analyses of structural ribosome heterogeneity led to a paradigm shift toward ribosome specialization for selective translation. As sessile organisms, plants cannot escape harmful environments and evolved strategies to withstand. Plant cytosolic ribosomes are in some respects more diverse than those of other metazoans. This diversity may contribute to plant stress acclimation. The goal of this thesis was to determine whether plants use ribosome heterogeneity to regulate protein synthesis through specialized translation. I focused on temperature acclimation, specifically on shifts to low temperatures. During cold acclimation, Arabidopsis ceases growth for seven days while establishing the responses required to resume growth. Earlier results indicate that ribosome biogenesis is essential for cold acclimation. REIL mutants (reil-dkos) lacking a 60S maturation factor do not acclimate successfully and do not resume growth. Using these genotypes, I ascribed cold-induced defects of ribosome biogenesis to the assembly of the polypeptide exit tunnel (PET) by performing spatial statistics of rProtein changes mapped onto the plant 80S structure. I discovered that growth cessation and PET remodeling also occurs in barley, suggesting a general cold response in plants. Cold triggered PET remodeling is consistent with the function of Rei-1, a REIL homolog of yeast, which performs PET quality control. Using seminal data of ribosome specialization, I show that yeast remodels the tRNA entry site of ribosomes upon change of carbon sources and demonstrate that spatially constrained remodeling of ribosomes in metazoans may modulate protein synthesis. I argue that regional remodeling may be a form of ribosome specialization and show that heterogeneous cytosolic polysomes accumulate after cold acclimation, leading to shifts in the translational output that differs between wild-type and reil-dkos. I found that heterogeneous complexes consist of newly synthesized and reused proteins. I propose that tailored ribosome complexes enable free 60S subunits to select specific 48S initiation complexes for translation. Cold acclimated ribosomes through ribosome remodeling synthesize a novel proteome consistent with known mechanisms of cold acclimation. The main hypothesis arising from my thesis is that heterogeneous/ specialized ribosomes alter translation preferences, adjust the proteome and thereby activate plant programs for successful cold acclimation. N2 - Ribosomen dekodieren mRNA, um Proteine zu synthetisieren. Ribosomen, früher als statische, ausführende Maschinen betrachtet, werden heute als dynamische Modulatoren der Translation angesehen. Zunehmend detailliertere Analysen der Strukturheterogenität von Ribosomen führte zu einem Paradigmenwechsel hin zu einer Spezialisierung von Ribosomen für eine selektive Translation. Als sessile Organismen können Pflanzen schädlichen Umwelteinflüssen nicht ausweichen und haben Strategien entwickelt, um diesen zu widerstehen. Zytosolische Ribosomen von Pflanzen sind in mancher Hinsicht vielfältiger, als die von anderen Metazoen. Diese Vielfalt könnte zur Stressakklimatisierung der Pflanzen beitragen. Ziel dieser Arbeit war es, festzustellen, ob Pflanzen die Heterogenität der Ribosomen nutzen, um die Proteinsynthese durch spezialisierte Translation zu regulieren. Ich habe mich auf die Temperaturakklimatisierung konzentriert, insbesondere auf den Wechsel zu niedrigen Temperaturen. Im Verlauf der Kälteakklimatisierung stellt Arabidopsis das Wachstum für sieben Tage ein. Währenddessen etabliert sie die für die Wiederaufnahme des Wachstums erforderlichen Anpassungen. Vorherige Ergebnisse deuten darauf hin, dass Ribosomenbiogenese für die Kälteakklimatisierung essentiell ist. REIL-Mutanten (reil-dkos), denen ein 60S-Reifungsfaktor fehlt, akklimatisieren sich nicht erfolgreich und nehmen das Wachstum nicht wieder auf. Anhand dieser Genotypen habe ich kältebedingte Defekte der Ribosomenbiogenese auf den Aufbau des Polypeptidaustritts-Tunnels (PET) zurückgeführt, indem ich räumliche statistische Analysen von rProtein-Veränderungen auf die pflanzliche 80S-Struktur abgebildet habe. Ich habe entdeckt, dass Wachstumsstillstand und PET-Umbau auch in Gerste auftreten, was auf eine allgemeine Kältereaktion in Pflanzen hindeutet. Der durch Kälte ausgelöste PET-Umbau stimmt über ein mit der Funktion von Rei-1, einem REIL-homologen Protein aus Hefe, in der Rei-1 die PET-Qualitätskontrolle durchführt. Anhand bahnbrechender Daten zur Ribosomenspezialisierung zeige ich, dass Hefe die tRNA-Eintrittsstelle von Ribosomen bei einem Wechsel von Kohlenstoffquellen umbaut, und demonstriere, dass ein räumlich begrenzter Umbau von Ribosomen in Metazoen die Proteinsynthese modulieren kann. Ich argumentiere, dass die regionale Umgestaltung eine Form der Ribosomenspezialisierung sein kann, und zeige, dass nach einer Kälteakklimatisierung heterogene zytosolische Polysomen akkumulieren, was zu Verschiebungen im Translationsoutput führt, der sich zwischen Wildtyp und reil-dkos unterscheidet. Ich habe festgestellt, dass die heterogenen Komplexe aus neu synthetisierten und wiederverwendeten Proteinen bestehen. Ich schlage vor, dass maßgeschneiderte Ribosomenkomplexe freie 60S-Untereinheiten in die Lage versetzen, spezifische 48S-Initiationskomplexe für die Translation auszuwählen. Kälte-akklimatisierte Ribosomen synthetisieren durch Ribosomenumbau ein neues Proteom, das mit bekannten Mechanismen der Kälteakklimatisierung übereinstimmt. Die Haupthypothese, die sich aus meiner Arbeit ergibt, ist, dass heterogene/spezialisierte Ribosomen ihre Translationspräferenzen verändern, das Proteom anpassen und dadurch Pflanzenprogramme für eine erfolgreiche Kälteakklimatisierung aktivieren. T2 - Ribosomenheterogenität und -spezialisierung während der Temperaturakklimatisierung in Pflanzen KW - Ribosome specialization KW - Ribosomal protein heterogeneity KW - Ribosomal protein substoichiometry KW - Protein synthesis KW - Translational regulation KW - Plant cytosolic translation KW - Cold acclimation KW - Ribosome biogenesis KW - 60S maturation KW - Hordeum vulgare KW - Arabidopsis thaliana KW - 60S-Reifung KW - Kälteakklimatisierung KW - Cytosolische Translation in Pflanzen KW - Proteinsynthese KW - Ribosomale Proteinheterogenität KW - Ribosomale Protein Substöchiometrie KW - Ribosomen-Biogenese KW - Ribosomen-Spezialisierung KW - Translationsregulation Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-580724 ER - TY - THES A1 - von Bismarck, Thekla T1 - The influence of long-term light acclimation on photosynthesis in dynamic light N2 - Photosynthesis converts light into metabolic energy which fuels plant growth. In nature, many factors influence light availability for photosynthesis on different time scales, from shading by leaves within seconds up to seasonal changes over months. Variability of light energy supply for photosynthesis can limit a plant´s biomass accumulation. Plants have evolved multiple strategies to cope with strongly fluctuation light (FL). These range from long-term optimization of leaf morphology and physiology and levels of pigments and proteins in a process called light acclimation, to rapid changes in protein activity within seconds. Therefore, uncovering how plants deal with FL on different time scales may provide key ideas for improving crop yield. Photosynthesis is not an isolated process but tightly integrates with metabolism through mutual regulatory interactions. We thus require mechanistic understanding of how long-term light acclimation shapes both, dynamic photosynthesis and its interactions with downstream metabolism. To approach this, we analyzed the influence of growth light on i) the function of known rapid photosynthesis regulators KEA3 and VCCN1 in dynamic photosynthesis (Chapter 2-3) and ii) the interconnection of photosynthesis with photorespiration (PR; Chapter 4). We approached topic (i) by quantifying the effect of different growth light regimes on photosynthesis and photoprotection by using kea3 and vccn1 mutants. Firstly, we found that, besides photosynthetic capacity, the activities of VCCN1 and KEA3 during a sudden high light phase also correlated with growth light intensity. This finding suggests regulation of both proteins by the capacity of downstream metabolism. Secondly, we showed that KEA3 accelerated photoprotective non-photochemical quenching (NPQ) kinetics in two ways: Directly via downregulating the lumen proton concentration and thereby de-activating pH-dependent NPQ, and indirectly via suppressing accumulation of the photoprotective pigment zeaxanthin. For topic (ii), we analyzed the role of PR, a process which recycles a toxic byproduct of the carbon fixation reactions, in metabolic flexibility in a dynamically changing light environment. For this we employed the mutants hpr1 and ggt1 with a partial block in PR. We characterized the function of PR during light acclimation by tracking molecular and physiological changes of the two mutants. Our data, in contrast to previous reports, disprove a generally stronger physiological relevance of PR under dynamic light conditions. Additionally, the two different mutants showed pronounced and distinct metabolic changes during acclimation to a condition inducing higher photosynthetic activity. This underlines that PR cannot be regarded purely as a cyclic detoxification pathway for 2PG. Instead, PR is highly interconnected with plant metabolism, with GGT1 and HPR1 representing distinct metabolic modulators. In summary, the presented work provides further insight into how energetic and metabolic flexibility is ensured by short-term regulators and PR during long-term light acclimation. N2 - Photosynthese wandelt Lichtenergie in metabolische Energie um, welche das Pflanzenwachstum antreibt. In der Natur wird die Verfügbarkeit von Licht von vielerlei Faktoren auf unterschiedlichen Zeitskalen beeinflusst, z. B. von der Beschattung durch Blätter innerhalb von Sekunden bis hin zu jahreszeitlichen Veränderungen über Monate. Fluktuationen in der Lichtenergieverfügbarkeit in der Natur kann die Biomasseakkumulation der Pflanzen limitieren. Pflanzen haben verschiedene Strategien entwickelt, um stark fluktuierendes Licht nutzen zu können. Diese reichen von der langfristigen Optimierung der Blattmorphologie und Physiologie und des Gehalts an Pigmenten und Proteinen in dem Prozess der Lichtakklimatisierung bis hin zu schnellen Veränderungen der Proteinaktivität innerhalb von Sekunden. Daher kann die Aufdeckung der Art und Weise, wie Pflanzen mit FL auf verschiedenen Zeitskalen umgehen, wichtige Ideen zur Verbesserung der Ernteerträge liefern. Die Photosynthese ist kein isolierter Prozess, sondern steht in enger Interaktion mit den nachgeschalteten Stoffwechselwegen. Daher benötigen wir mechanistisches Verständnis, wie Lichtakklimatisierung die dynamische Photosynthese als auch deren Interaktion mit Downstream-Metabolismus moduliert. Dafür haben wir den Einfluss von Lichtakklimatisierung auf i) die Funktion der schnellen Photosyntheseregulatoren KEA3 und VCCN1 in der dynamischen Photosynthese und ii) die flexible Interaktion von Photorespiration mit Photosynthese analysiert. Im ersten Themenkomplex (i) wurden die Auswirkungen verschiedener Wachstumslicht-bedingungen auf Photosynthese und Photoprotektion anhand von kea3- und vccn1-Mutanten quantifiziert. Zum einen konnten wir zeigen, dass neben der photosynthetischen Kapazität auch die Aktivitäten von VCCN1 und KEA3 während eines Hochlichtpulses mit der Wachstumslichtintensität korrelierten. Dies deutet auf eine Regulierung beider Proteine durch die Kapazität des Downstream-Metabolismus hin. Zum anderen beschleunigte KEA3 die Kinetik des photoprotektiven nicht-photochemischen Quenchings (NPQ) auf zweifache Weise: Direkt über die Herabregulierung der lumenalen Protonenkonzentration, was den pH-abhängigen NPQ deaktivierte, und indirekt über die Unterdrückung der Akkumulation des photoprotektiven Pigments Zeaxanthin. Für das zweite Thema (ii) untersuchten wir die Rolle des photorespiratorischen Metabolismus (PR), welcher ein toxisches Nebenprodukt der Kohlenstofffixierungsreaktionen recycelt, in der metabolischen Flexibilität in einer sich dynamisch verändernden Lichtumgebung. Dazu verwendeten wir die Mutanten hpr1 und ggt1 mit teilweise blockiertem PR Flux. Unsere Daten widerlegen, im Gegensatz zu früheren Berichten, eine allgemein größere physiologische Bedeutung von PR unter dynamischen Lichtbedingungen. Die beiden Mutanten zeigten ausgeprägte und distinkte metabolische Veränderungen während der Akklimatisierung an eine Bedingung mit höherer photosynthetischer Aktivität. Dies zeigt, dass PR nicht ausschließlich als zyklischer Entgiftungsweg für 2PG angesehen werden kann. Vielmehr ist PR tief in den pflanzlichen Stoffwechsel eingebettet, wobei GGT1 und HPR1 als distinkte Stellschrauben des Downstream-Metabolismus agieren. Zusammenfassend liefert die vorliegende Arbeit weitere Erkenntnisse darüber, wie die energetische und metabolische Flexibilität durch kurzfristige Regulatoren und den photorespiratorischen Metabolismus während der langfristigen Lichtakklimatisierung gewährleistet wird. KW - photosynthesis KW - fluctuating light KW - Arabidopsis thaliana KW - Photosynthese KW - fluktuierendes Licht Y1 - 2023 ER - TY - THES A1 - Apriyanto, Ardha T1 - Analysis of starch metabolism in source and sink tissue of plants T1 - Analyse des Stärkestoffwechsels im Source und Sink Gewebe von Pflanzen N2 - Starch is an essential biopolymer produced by plants. Starch can be made inside source tissue (such as leaves) and sink tissue (such as fruits and tubers). Nevertheless, understanding how starch metabolism is regulated in source and sink tissues is fundamental for improving crop production. Despite recent advances in the understanding of starch and its metabolism, there is still a knowledge gap in the source and sink metabolism. Therefore, this study aimed to summarize the state of the art regarding starch structure and metabolism inside plants. In addition, this study aimed to elucidate the regulation of starch metabolism in the source tissue using the leaves of a model organism, Arabidopsis thaliana, and the sink tissue of oil palm (Elaeis guineensis) fruit as a commercial crop. The research regarding the source tissue will focus on the effect of the blockage of starch degradation on the starch parameter in leaves, especially in those of A. thaliana, which lack both disproportionating enzyme 2 (DPE2) and plastidial glucan phosphorylase 1 (PHS1) (dpe2/phs1). The additional elimination of phosphoglucan water dikinase (PWD), starch excess 4 (SEX4), isoamylase 3 (ISA3), and disproportionating enzyme 1 (DPE1) in the dpe2/phs1 mutant background demonstrates the alteration of starch granule number per chloroplast. This study provides insights into the control mechanism of granule number regulation in the chloroplast. The research regarding the sink tissue will emphasize the relationship between starch metabolism and the lipid metabolism pathway in oil palm fruits. This study was conducted to observe the alteration of starch parameters, metabolite abundance, and gene expression during oil palm fruit development with different oil yields. This study shows that starch and sucrose can be used as biomarkers for oil yield in oil palms. In addition, it is revealed that the enzyme isoforms related to starch metabolism influence the oil production in oil palm fruit. Overall, this thesis presents novel information regarding starch metabolism in the source tissue of A.thaliana and the sink tissue of E.guineensis. The results shown in this thesis can be applied to many applications, such as modifying the starch parameter in other plants for specific needs. N2 - Stärke ist ein unverzichtbares Biopolymer, das von Pflanzen sowohl in den Quellgeweben (sources, z. B. Blätter) als auch in den Senkengeweben (sinks, z. B. Früchten und Knollen) gebildet wird. Daher ist ein profundes Wissen über die Regulation des Stärkestoffwechsel in den source und sink Organen von grundlegender Bedeutung für die Verbesserung der Pflanzenproduktion. Trotz der jüngsten Fortschritte im Verständnis des Stärkestoffwechsels bleiben weiterhin viele Fragen über den detaillierten source und sink Metabolismus offen. Ziel dieser Studie war es daher, den aktuellen Forschungsstand über die Struktur und den Stoffwechsel von Stärke in Pflanzen aufzuzeigen. Darüber hinaus sollte in dieser Studie die Regulierung des Stärkestoffwechsels in den Blättern (source) des Modellorganismus Arabidopsis thaliana und in den Ölpalmfrüchten (sink) von Elaeis guineensis, einer Nutzpflanze, aufgeklärt werden. Die Analyse des source Gewebes konzentrierte sich dabei auf die Auswirkungen auf Stärkeparamter wie beispielsweise die Granulazahl durch die Blockierung des Stärkeabbaus in Blättern. Dazu wurde die Arabidopsis Mutante, der das cytosolische Disproportionating Enzym 2 (DPE2) und die plastidiale Glucanphosphorylase 1 (PHS1) fehlen (dpe2/phs1), untersucht. Ebenfalls wurden Dreifachmutanten im Hintergund von dpe2/phs1, denen Starch excess 4 (SEX4), Isoamylase 3, Phosphoglucan-Wasser-Dikinase (PWD) oder das Disproportionating Enzym 1 (DPE1) fehlen, erzeugt. Die Analyse zeigt, dass die Anzahl der Stärkegranula pro Chloroplast nicht festgelegt ist und während des gesamten Wachstums der Pflanze reguliert wird. Diese Daten liefern ein verbessertes Verständnis über die Komplexität der Kontrollmechanismen der Granulazahlregulation in Chloroplasten. Die Untersuchung des sink Gewebes soll die Beziehung zwischen dem Stärkestoffwechsel und dem Lipidstoffwechselweg in Ölpalmenfrüchten verdeutlichen. Diese Studie wurde durchgeführt, um die Veränderung von Stärkeparametern, die Häufigkeit von Metaboliten und die Genexpression während der Entwicklung von Ölpalmenfrüchten mit unterschiedlichen Ölausbeuten zu erforschen. Die Analyse zeigt, dass sowohl Stärke als auch Saccharose als reliable Biomarker für den Ölertrag von Ölpalmen verwendet werden können. Darüber hinaus konnte bewiesen werden, dass die mit dem Stärkestoffwechsel verbundenen Enzymisoformen die Ölproduktion in Ölpalmenfrüchten beeinflussen. Insgesamt liefert diese Arbeit neue Informationen über den Stärkestoffwechsel im source Gewebe von A.thaliana und im sink von E.guineensis. Die in dieser Arbeit gezeigten Ergebnisse können für viele Anwendungen genutzt werden, z. B. für die Veränderung der Stärkeparameter in anderen Pflanzen für spezifische Bedürfnisse. KW - starch KW - oil palm KW - Arabidopsis thaliana KW - source and sink KW - Arabidopsis thaliana KW - Palmöl KW - Source und Sink KW - Stärke Y1 - 2023 ER - TY - THES A1 - Vyse, Kora T1 - Elucidating molecular determinants of the loss of freezing tolerance during deacclimation after cold priming and low temperature memory after triggering N2 - Während ihrer Entwicklung müssen sich Pflanzen an Temperaturschwankungen anpassen. Niedrige Temperaturen über dem Gefrierpunkt induzieren in Pflanzen eine Kälteakklimatisierung und höhere Frosttoleranz, die sich bei wärmeren Temperaturen durch Deakklimatisierung wieder zurückbildet. Der Wechsel zwischen diesen beiden Prozessen ist für Pflanzen unerlässlich, um als Reaktion auf unterschiedliche Temperaturbedingungen eine optimale Fitness zu erreichen. Die Kälteakklimatisierung ist umfassend untersucht worden,über die Regulierung der Deakklimatisierung ist jedoch wenig bekannt. In dieser Arbeit wird der Prozess der Deakklimatisierung auf physiologischer und molekularer Ebene in Arabidopsis thaliana untersucht. Messungen des Elektrolytverlustes während der Kälteakklimatisierung und bis zu vier Tagen nach Deakklimatisierung ermöglichten die Identifizierung von vier Knockout-Mutanten (hra1, lbd41, mbf1c und jub1), die im Vergleich zum Wildtyp eine langsamere Deakklimatisierungsrate aufwiesen. Eine transkriptomische Studie mit Hilfe von RNA-Sequenzierung von A. thaliana Col-0, jub1 und mbf1c zeigte die Bedeutung der Hemmung von stressreaktiven und Jasmonat-ZIM-Domänen-Genen sowie die Regulierung von Zellwandmodifikationen während der Deakklimatisierung. Darüber hinaus zeigten Messungen der Alkoholdehydrogenase Aktivität und der Genexpressionsänderungen von Hypoxiemarkern während der ersten vier Tagen der Deakklimatisierung, dass eine Hypoxie-Reaktion während der Deakklimatisierung aktiviert wird. Es wurde gezeigt, dass die epigenetische Regulierung während der Kälteakklimatisierung und der 24-stündigen Deakklimatisierung in A. thaliana eine große Rolle spielt. Darüber hinaus zeigten beide Deakklimatisierungsstudien, dass die frühere Hypothese, dass Hitzestress eine Rolle bei der frühen Deakklimatisierung spielen könnte, unwahrscheinlich ist. Eine Reihe von DNA- und Histondemethylasen sowie Histonvarianten wurden während der Deakklimatisierung hochreguliert, was auf eine Rolle im pflanzlichen Gedächtnis schließen lässt. In jüngster Zeit haben mehrere Studien gezeigt, dass Pflanzen in der Lage sind, die Erinnerung an einen vorangegangenen Kältestress auch nach einer Woche Deakklimatisierung zu bewahren. In dieser Arbeit ergaben Transkriptom- und Metabolomanalysen von Arabidopsis während 24 Stunden Priming (Kälteakklimatisierung) und Triggering (wiederkehrender Kältestress nach Deakklimatisierung) eine unikale signifikante und vorübergehende Induktion der Transkriptionsfaktoren DREB1D, DREB1E und DREB1F während des Triggerings, die zur Feinabstimmung der zweiten Kältestressreaktion beiträgt. Darüber hinaus wurden Gene, die für Late Embryogenesis Abundant (LEA) und Frostschutzproteine kodieren, sowie Proteine, die reaktive Sauerstoffspezies entgiften, während des späten Triggerings (24 Stunden) stärker induziert als nach dem ersten Kälteimpuls, während Xyloglucan- Endotransglucosylase/Hydrolase Gene, deren Produkte für eine Restrukturierung der Zellwand verantwortlich sind, früh auf das Triggering reagierten. Die starke Induktion dieser Gene, sowohl bei der Deakklimatisierung als auch beim Triggering, lässt vermuten, dass sie eine wesentliche Rolle bei der Stabilisierung der Zellen während des Wachstums und bei der Reaktion auf wiederkehrende Stressbedingungen spielen. Zusammenfassend gibt diese Arbeit neue Einblicke in die Regulierung der Deakklimatisierung und des Kältestress-Gedächtnisses in A. thaliana und eröffnet neue Möglichkeiten für künftige, gezielte Studien von essentiellen Genen in diesem Prozess. N2 - Throughout their lifetime plants need to adapt to temperature changes. Plants adapt to nonfreezing cold temperatures in a process called cold priming (cold acclimation) and lose the acquired freezing tolerance during warmer temperatures through deacclimation. The alternation of both processes is essential for plants to achieve optimal fitness in response to different temperature conditions. Cold acclimation has been extensively studied, however, little is known about the regulation of deacclimation. This thesis elucidates the process of deacclimation on a physiological and molecular level in Arabidopsis thaliana. Electrolyte leakage measurements during cold acclimation and up to four days of deacclimation enabled the identification of four knockout mutants (hra1, lbd41, mbf1c and jub1) with a slower rate of deacclimation compared to the wild type. A transcriptomic study using RNA-Sequencing in A. thaliana Col-0, jub1 and mbf1c identified the importance of the inhibition of stress responsive and Jasmonate-ZIM-domain genes as well as the regulation of cell wall modifications during deacclimation. Moreover, measurements of alcohol dehydrogenase activity and gene expression changes of hypoxia markers during the first four days of deacclimation evidently showed that a hypoxia response is activated during deacclimation. Epigenetic regulation was observed to be extensively involved during cold acclimation and 24 h of deacclimation in A. thaliana. Further, both deacclimation studies showed that the previous hypothesis that heat stress might play a role in early deacclimation, is not likely. A number of DNA- and histone demethylases as well as histone variants were upregulated during deacclimation suggesting a role in plant memory. Recently, multiple studies have shown that plants are able to retain memory of a previous cold stress even after a week of deacclimation. In this work, transcriptomic and metabolomic analyses of Arabidopsis during 24 h of priming (cold acclimation) and triggering (recurring cold stress after deacclimation) revealed a uniquely significant and transient induction of DREB1D, DREB1E and DREB1F transcription factors during triggering contributing to fine-tuning of the second cold stress response. Furthermore, genes encoding Late Embryogenesis Abundant (LEA) and antifreeze proteins and proteins detoxifying reactive oxygen species were higher induced during late triggering (24 h) compared to primed samples, while cell wall remodelers of the class xyloglucan endotransglucosylase/hydrolase were early responders of triggering. The high induction of cell wall remodelers during deacclimation as well as triggering proposes that these proteins play an essential role in the stabilization of the cells during growth as well as the response to recurring stresses. Collectively this work gives new insights on the regulation of deacclimation and cold stress memory in A. thaliana and opens the door to future targeted studies of essential genes in this process. KW - cold stress KW - deacclimation KW - Arabidopsis thaliana KW - epigenetics KW - co-expression network analysis KW - WGCNA KW - RNA-sequencing KW - differential gene expression KW - hypoxia KW - transcription factors KW - Kältestress KW - Deakklimatisierung KW - Epigenetik KW - Koexpression Netzwerk Analysen KW - RNA-Sequenzierung KW - Differenzielle Genexpression KW - Hypoxie KW - Transkriptionsfaktoren Y1 - 2022 ER - TY - THES A1 - Oberkofler, Vicky T1 - Molecular basis of HS memory in Arabidopsis thaliana T1 - Die molekulare Basis des Hitzestress-Gedächtnisses in Arabidopsis thaliana N2 - Plants can be primed to survive the exposure to a severe heat stress (HS) by prior exposure to a mild HS. The information about the priming stimulus is maintained by the plant for several days. This maintenance of acquired thermotolerance, or HS memory, is genetically separable from the acquisition of thermotolerance itself and several specific regulatory factors have been identified in recent years. On the molecular level, HS memory correlates with two types of transcriptional memory, type I and type II, that characterize a partially overlapping subset of HS-inducible genes. Type I transcriptional memory or sustained induction refers to the sustained transcriptional induction above non-stressed expression levels of a gene for a prolonged time period after the end of the stress exposure. Type II transcriptional memory refers to an altered transcriptional response of a gene after repeated exposure to a stress of similar duration and intensity. In particular, enhanced re-induction refers to a transcriptional pattern in which a gene is induced to a significantly higher degree after the second stress exposure than after the first. This thesis describes the functional characterization of a novel positive transcriptional regulator of type I transcriptional memory, the heat shock transcription factor HSFA3, and compares it to HSFA2, a known positive regulator of type I and type II transcriptional memory. It investigates type I transcriptional memory and its dependence on HSFA2 and HSFA3 for the first time on a genome-wide level, and gives insight on the formation of heteromeric HSF complexes in response to HS. This thesis confirms the tight correlation between transcriptional memory and H3K4 hyper-methylation, reported here in a case study that aimed to reduce H3K4 hyper-methylation of the type II transcriptional memory gene APX2 by CRISPR/dCas9-mediated epigenome editing. Finally, this thesis gives insight into the requirements for a heat shock transcription factor to function as a positive regulator of transcriptional memory, both in terms of its expression profile and protein abundance after HS and the contribution of individual functional domains. In summary, this thesis contributes to a more detailed understanding of the molecular processes underlying transcriptional memory and therefore HS memory, in Arabidopsis thaliana. N2 - Pflanzen können darauf vorbereitet werden, einen schweren Hitzestress (HS) zu überleben, indem sie zuvor einem leichten HS ausgesetzt werden. Die Information über den Priming-Stimulus wird von der Pflanze mehrere Tage lang aufrechterhalten. Diese Aufrechterhaltung der erworbenen Thermotoleranz, das so genannte HS-Gedächtnis, ist genetisch vom Erwerb der Thermotoleranz selbst trennbar, und in den letzten Jahren wurden mehrere spezifische Regulierungsfaktoren identifiziert. Auf molekularer Ebene korreliert das HS-Gedächtnis mit zwei Arten von Transkriptionsgedächtnis, Typ I und Typ II, die eine sich teilweise überschneidende Untergruppe von HS-induzierbaren Genen charakterisieren. Das Transkriptionsgedächtnis vom Typ I oder die anhaltende Induktion bezieht sich auf die anhaltende Transkriptionsinduktion eines Gens über das Niveau der Expression im ungestressten Zustand hinaus über einen längeren Zeitraum nach dem Ende der Stressbelastung. Das Transkriptionsgedächtnis des Typs II bezieht sich auf eine veränderte Transkriptionsreaktion eines Gens nach wiederholter Exposition gegenüber einem Hitzestress von ähnlicher Dauer und Intensität. Insbesondere bezieht sich dabei die verstärkte Re-Induktion auf ein Transkriptionsmuster, bei dem ein Gen nach der zweiten Stressexposition in deutlich höherem Maße induziert wird als nach der ersten. Diese Arbeit beschreibt die funktionelle Charakterisierung eines neuartigen positiven Transkriptionsregulators des Typ-I-Transkriptionsgedächtnisses, des Hitzeschock-Transkriptionsfaktors HSFA3, und vergleicht ihn mit HSFA2, einem bekannten positiven Regulator des Typ-I- und Typ-II-Transkriptionsgedächtnisses. Die Arbeit untersucht das Typ-I-Transkriptionsgedächtnis und seine Abhängigkeit von HSFA2 und HSFA3 zum ersten Mal auf genomweiter Ebene und gibt Einblick in die Bildung heteromerer HSF-Komplexe als Reaktion auf HS. Diese Arbeit bestätigt den engen Zusammenhang zwischen transkriptionellem Gedächtnis und H3K4-Hypermethylierung, über den hier in einer Fallstudie berichtet wird, die darauf abzielt, die H3K4-Hypermethylierung des Typ-II-Transkriptionsgedächtnisgens APX2 durch CRISPR/dCas9-vermitteltes Epigenom-Editing zu reduzieren. Schließlich gibt diese Arbeit einen Einblick in die Anforderungen, die ein Hitzeschock-Transkriptionsfaktor erfüllen muss, damit er als positiver Regulator des Transkriptionsgedächtnisses fungieren kann, und zwar sowohl in Bezug auf sein Expressionsprofil und seine Proteinabundanz nach HS als auch in Bezug auf den Beitrag seiner einzelnen funktionellen Domänen. Zusammenfassend trägt diese Arbeit zu einem genaueren Verständnis der molekularen Prozesse bei, die dem Transkriptionsgedächtnis und damit dem HS-Gedächtnis in Arabidopsis thaliana zugrunde liegen. KW - Arabidopsis thaliana KW - abiotic stress KW - heat stress memory KW - transcription factors KW - HSF KW - epigenome editing KW - histone methylation KW - H3K4me KW - Arabidopsis thaliana KW - H3K4me KW - Hitzeschock-Transkriptionsfaktor KW - abiotischer Stress KW - Epigenom Editierung KW - Hitzestress-Gedächtnis KW - Histon Methylierung KW - Transkriptionsfaktoren Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-569544 ER - TY - THES A1 - Mahto, Harendra T1 - In vitro analysis of Early Starvation 1 (ESV1) and Like Early Starvation 1 (LESV) on starch degradation with focus on glucan, water dikinase (GWD) and phosphoglucan, water dikinase (PWD) N2 - Starch is an insoluble polyglucan, comprises of two polymers, namely, the branched α-1,4: α-1,6-D-glucan amylopectin and the almost unbranched α-1,4-D-glucan amylose. The growth of all plants is directly dependent on the accumulation of transitory starch during the daytime when photosynthesis takes place and subsequently starch degradation during the night. Starch phosphorylation takes place by starch-related dikinases called α-glucan, water dikinase (GWD), and phosphoglucan, water dikinase (PWD), and is a very important step in starch degradation. The biochemical mechanisms of phosphorylation of starch are not properly understood. Recent studies have found that there are two starch binding proteins namely, Early Starvation1 (ESV1) and Like Early Starvation1 (LESV), which play an important role in starch metabolism. It has been shown that ESV1 and LESV proteins affect the starch phosphorylation activity of GWD and PWD enzymes, which control the rate of degradation of starch granules. In this thesis, various in vitro assays were performed to identify and understand the mechanism of recombinant proteins; ESV1 and LESV on the starch degradation. The starch degradation was performed by phosphorylation enzymes, GWD and PWD separately. In various enzymatic assays, the influence of the ESV1 and LESV on the actions of GWD and PWD on the surfaces of different native starch granules were analysed. Furthermore, ESV1 and LESV have specifically shown influences on the phosphorylation activities of GWD and PWD on the starch granule surfaces in an antagonistic pattern in such a way that, the GWD mediated phosphorylation were significantly reduced while PWD mediated phosphorylation were significantly increased respectively. In another set of experiments, ISA and BAM hydrolyzing enzymes were used to alter the structure of starch, and then determine the effect of both dikinases mediated phosphorylation in the presence of ESV1 and LESV on the altered starch granules surfaces. In these results, significant decreases in both GWD and PWD mediated phosphorylation were observed in all the treatments containing either ESV1 or LESV proteins only or both ESV1 and LESV. It was also found that LESV preferentially binds to both amylose and amylopectin, while ESV1 binds to highly ordered glucans such as maltodextrins and amylopectin, which are crystalline in structure. Both ESV1 or LESV proteins either individually or in combination have shown influence on the activity of GWD and PWD phosphate incorporation into the starch granules via reduction even though at different percentages depending on the sources of starch, therefore it is difficult to distinguish the specific function between them. The biochemical studies have shown that protein-glucan interaction specifically between ESV1 or LESV or in combination with different species of starch granules has very strong surface binding, or it might be possible that both the proteins not only bind to the surface of the starch granules but also have entered deep inside the glucan structure of the starch granules. However, the results also revealed that ESV1 and LESV did not alter the autophosphorylation of the dikinases. Also, the chain length distribution pattern of the released glucan chains after treatment of starch with ISA enzyme was evaluated with respect to the degree of polymerization (DP) of the different starch granules. Capillary electrophoresis was employed to study the effect of LESV and ESV1 on the chain length distribution. In summary, this study confirms that ESV1 and LESV play an important role in organizing and regulating the starch metabolism process. In the later half, studies were performed to monitor whether the metabolism of carbohydrates and partitioning, contribute to the higher salt tolerance of the facultative halophyte Hordeum marinum when compared to glycophyte Hordeum vulgare. Seedlings with the same size from both species were hydroponically grown at 0, 150, and 300 mM of NaCl for 3 weeks. H. marinum maintained a high relative growth rate, which was found concomitant in higher aptitude plants to maintain efficient shoot tissue hydration and integrity of membrane under salt conditions when compared to H. vulgare. Hence, our data suggested that the change in the starch storage, distribution of soluble sugar concentrations between source and sink organs, and also changes in the level of enzymes involved in the starch metabolism was significant to give insights into the importance of carbohydrate metabolism in barley species with regards to the salt tolerance. Although these results are still in their nascent state, it could be vital for other researchers to formulate future studies. The preliminary results which were studies about the carbohydrate metabolism and partitioning in salt responses in the halophyte H. marinum and the glycophyte H. vulgare revealed that salt tolerance in barley species is not due to osmotic adjustments, but due to other reasons that were not explored in the past studies. However, the activity of DPE2 in H. vulgare was not hampered by the presence of NaCl as observed. While Pho1 and Pho2, activities were highly increased in cultivated barley. These findings could be suggestive of a possible role of these enzymes in the responses of carbohydrate metabolism to salinity. When sea and cultivated barley species were compared, it was discovered that the former had more versatility in carbohydrate metabolism and distribution. N2 - Stärke ist ein unlösliches Polyglucan, das aus zwei Polymeren besteht, nämlich dem verzweigten α-1,4: α-1,6-D-Glucan Amylopektin und dem fast unverzweigten α-1,4-D-Glucan Amylose. Das Wachstum aller Pflanzen hängt direkt von der Akkumulation transitorischer Stärke während des Tages, wenn die Photosynthese stattfindet, und dem anschließenden Stärkeabbau während der Nacht ab. Die Phosphorylierung von Stärke erfolgt durch stärkeverwandte Dikinasen, die α-Glucan-Wasser-Dikinase (GWD) und Phosphoglucan-Wasser-Dikinase (PWD), und ist ein entscheidender Schritt beim Stärkeabbau. Die biochemischen Mechanismen der Phosphorylierung von Stärke sind nicht genau bekannt. Jüngste Studien haben ergeben, dass es zwei stärkebindende Proteine gibt, nämlich Early Starvation1 (ESV1) und Like Early Starvation1 (LESV), die eine wichtige Rolle im Stärkestoffwechsel spielen. Es hat sich gezeigt, dass ESV1- und LESV-Proteine die Stärkephosphorylierungsaktivität der GWD- und PWD-Enzyme beeinflussen, die die Geschwindigkeit des Abbaus von Stärkekörnern steuern. In dieser Arbeit wurden verschiedene In-vitro-Tests durchgeführt, um den Mechanismus der rekombinanten Proteine ESV1 und LESV auf den Stärkeabbau zu identifizieren und zu verstehen.Der Stärkeabbau wurde von den Phosphorylierungsenzymen GWD und PWD getrennt durchgeführt. In verschiedenen enzymatischen Assays wurde der Einfluss von ESV1 und LESV auf die Wirkung von GWD und PWD auf die Oberflächen verschiedener nativer Stärkekörner analysiert. Darüber hinaus haben ESV1 und LESV spezifisch Einflüsse auf die Phosphorylierungsaktivitäten von GWD und PWD auf den Oberflächen der Stärkekörner in einem antagonistischen Muster gezeigt, so dass die GWD-vermittelte Phosphorylierung signifikant reduziert wurde, während die PWD-vermittelte Phosphorylierung signifikant erhöht wurde. In einer anderen Versuchsreihe wurden ISA- und BAM verwendet, um die Struktur der Stärke zu verändern und dann die Auswirkungen der durch beide Dikinasen vermittelten Phosphorylierung in Gegenwart von ESV1 und LESV auf die veränderten Oberflächen der Stärkekörner zu bestimmen. In diesen Ergebnissen wurde ein signifikanter Rückgang der GWD- und PWD-vermittelten Phosphorylierung in allen Behandlungen beobachtet, die entweder nur ESV1- oder LESV-Proteine oder sowohl ESV1 als auch LESV enthielten. Es wurde auch festgestellt, dass LESV vorzugsweise an Amylose und Amylopektin bindet, während ESV1 an hochgeordnete Glucane wie Maltodextrine und Amylopektin bindet, die eine kristalline Struktur aufweisen. Sowohl ESV1- als auch LESV-Proteine haben entweder einzeln oder in Kombination einen Einfluss auf die Aktivität des GWD- und PWD-Phosphateinbaus in die Stärkekörner durch Reduktion gezeigt, jedoch zu unterschiedlichen Prozentsätzen, je nach Stärkequelle, so dass es schwierig ist, ihre spezifische Funktion zu unterscheiden. Die biochemischen Untersuchungen zeigen, dass die Protein-Glucan-Interaktion speziell zwischen ESV1 oder LESV oder in Kombination mit verschiedenen Arten von Stärkekörnern eine sehr starke Oberflächenbindung aufweist, oder es ist möglich, dass beide Proteine nicht nur an die Oberfläche der Stärkekörner binden, sondern auch tief in die Glucanstruktur der Stärkekörner eingedrungen sind. Die Ergebnisse zeigten jedoch auch, dass ESV1 und LESV die Autophosphorylierung der Dikinasen nicht veränderten. Außerdem wurde die Kettenlängenverteilung der freigesetzten Glucanketten nach Behandlung der Stärke mit dem ISA-Enzym im Hinblick auf den Polymerisationsgrad (DP) der verschiedenen Stärkekörner bewertet. Mit Hilfe der Kapillarelektrophorese wurde die Wirkung von LESV und ESV1 auf die Kettenlängenverteilung untersucht. Zusammenfassend bestätigt diese Studie, dass ESV1 und LESV eine wichtige Rolle bei der Organisation und Regulierung des Stärkestoffwechsels spielen. In der zweiten Hälfte wurden Untersuchungen durchgeführt, um zu prüfen, ob der Stoffwechsel von Kohlenhydraten und deren Verteilung zu der höheren Salztoleranz des fakultativen Halophyten Hordeum marinum im Vergleich zum Glykophyten Hordeum vulgare beitragen. Die gleich großen Sämlinge beider Arten wurden 3 Wochen lang bei 0, 150 und 300 mM NaCl hydroponisch gezogen. H. marinum wies eine hohe relative Wachstumsrate auf, die mit einer höheren Fähigkeit der Pflanzen einherging, unter Salzbedingungen eine effiziente Hydratation des Sprossgewebes und die Integrität der Membran aufrechtzuerhalten, als dies bei H. vulgare der Fall war. Unsere Daten deuten also darauf hin, dass die Veränderungen in der Stärkespeicherung, die Verteilung der Konzentrationen löslicher Zucker zwischen Source- und Sinkorganen und auch die Veränderungen in der Menge der am Stärkestoffwechsel beteiligten Enzyme von Bedeutung sind und Einblicke in die Bedeutung des Kohlenhydratstoffwechsels bei Gerstenarten im Hinblick auf die Salztoleranz geben. Obwohl sich diese Ergebnisse noch im Anfangsstadium befinden, könnten sie für andere Forscher bei der Formulierung künftiger Studien von entscheidender Bedeutung sein. Die vorläufigen Ergebnisse der Studien über den Kohlenhydratstoffwechsel und die Verteilung der Kohlenhydrate bei Salzreaktionen im Halophyten H. marinum und im Glykophyten H. vulgare haben gezeigt, dass die Salztoleranz bei Gerstenarten nicht auf osmotische Anpassungen zurückzuführen ist, sondern auf andere Gründe, die in den bisherigen Studien nicht untersucht wurden. Die Aktivität von DPE2 in H. vulgare wurde jedoch nicht wie beobachtet durch die Anwesenheit von NaCl beeinträchtigt. Dagegen waren die Aktivitäten von Pho1 und Pho2 in kultivierter Gerste stark erhöht. Diese Ergebnisse könnten auf eine mögliche Rolle dieser Enzyme bei der Reaktion des Kohlenhydratstoffwechsels auf den Salzgehalt hinweisen. Beim Vergleich von Meeres- und Kulturgerstenarten wurde festgestellt, dass erstere eine größere Vielseitigkeit im Kohlenhydratstoffwechsel und in der Kohlenhydratverteilung aufweisen. KW - Arabidopsis thaliana KW - starch phosphorylation KW - phosphoglucan KW - starch granule surface KW - Early Starvation 1 Y1 - 2022 ER - TY - THES A1 - Schaarschmidt, Stephanie T1 - Evaluation and application of omics approaches to characterize molecular responses to abiotic stresses in plants T1 - Evaluierung und Anwendung von Omics-Methoden zur Charakterisierung von abiotischem Stress in Pflanzen auf molekularer Ebene N2 - Aufgrund des globalen Klimawandels ist die Gewährleistung der Ernährungssicherheit für eine wachsende Weltbevölkerung eine große Herausforderung. Insbesondere abiotische Stressoren wirken sich negativ auf Ernteerträge aus. Um klimaangepasste Nutzpflanzen zu entwickeln, ist ein umfassendes Verständnis molekularer Veränderungen in der Reaktion auf unterschiedlich starke Umweltbelastungen erforderlich. Hochdurchsatz- oder "Omics"-Technologien können dazu beitragen, Schlüsselregulatoren und Wege abiotischer Stressreaktionen zu identifizieren. Zusätzlich zur Gewinnung von Omics-Daten müssen auch Programme und statistische Analysen entwickelt und evaluiert werden, um zuverlässige biologische Ergebnisse zu erhalten. Ich habe diese Problemstellung in drei verschiedenen Studien behandelt und dafür zwei Omics-Technologien benutzt. In der ersten Studie wurden Transkript-Daten von den beiden polymorphen Arabidopsis thaliana Akzessionen Col-0 und N14 verwendet, um sieben Programme hinsichtlich ihrer Fähigkeit zur Positionierung und Quantifizierung von Illumina RNA Sequenz-Fragmenten („Reads“) zu evaluieren. Zwischen 92% und 99% der Reads konnten an die Referenzsequenz positioniert werden und die ermittelten Verteilungen waren hoch korreliert für alle Programme. Bei der Durchführung einer differentiellen Genexpressionsanalyse zwischen Pflanzen, die bei 20 °C oder 4 °C (Kälteakklimatisierung) exponiert wurden, ergab sich eine große paarweise Überlappung zwischen den Programmen. In der zweiten Studie habe ich die Transkriptome von zehn verschiedenen Oryza sativa (Reis) Kultivaren sequenziert. Dafür wurde die PacBio Isoform Sequenzierungstechnologie benutzt. Die de novo Referenztranskriptome hatten zwischen 38.900 bis 54.500 hoch qualitative Isoformen pro Sorte. Die Isoformen wurden kollabiert, um die Sequenzredundanz zu verringern und danach evaluiert z.B. hinsichtlich des Vollständigkeitsgrades (BUSCO), der Transkriptlänge und der Anzahl einzigartiger Transkripte pro Genloci. Für die hitze- und trockenheitstolerante Sorte N22 wurden ca. 650 einzigartige und neue Transkripte identifiziert, von denen 56 signifikant unterschiedlich in sich entwickelnden Samen unter kombiniertem Trocken- und Hitzestress exprimiert wurden. In der letzten Studie habe ich die Veränderungen in Metabolitprofilen von acht Reissorten gemessen und analysiert, die dem Stress hoher Nachttemperaturen (HNT) ausgesetzt waren und während der Trocken- und Regenzeit im Feld auf den Philippinen angebaut wurden. Es wurden jahreszeitlich bedingte Veränderungen im Metabolitspiegel sowie für agronomische Parameter identifiziert und mögliche Stoffwechselwege, die einen Ertragsrückgang unter HNT-Bedingungen verursachen, vorgeschlagen. Zusammenfassend konnte ich zeigen, dass der Vergleich der RNA-seq Programme den Pflanzenwissenschaftler*innen helfen kann, sich für das richtige Werkzeug für ihre Daten zu entscheiden. Die de novo Transkriptom-Rekonstruktion von Reissorten ohne Genomsequenz bietet einen gezielten, kosteneffizienten Ansatz zur Identifizierung neuer Gene, die durch verschiedene Stressbedingungen reguliert werden unabhängig vom Organismus. Mit dem Metabolomik-Ansatz für HNT-Stress in Reis habe ich stress- und jahreszeitenspezifische Metabolite identifiziert, die in Zukunft als molekulare Marker für die Verbesserung von Nutzpflanzen verwendet werden könnten. N2 - Due to global climate change providing food security for an increasing world population is a big challenge. Especially abiotic stressors have a strong negative effect on crop yield. To develop climate-adapted crops a comprehensive understanding of molecular alterations in the response of varying levels of environmental stresses is required. High throughput or ‘omics’ technologies can help to identify key-regulators and pathways of abiotic stress responses. In addition to obtain omics data also tools and statistical analyses need to be designed and evaluated to get reliable biological results. To address these issues, I have conducted three different studies covering two omics technologies. In the first study, I used transcriptomic data from the two polymorphic Arabidopsis thaliana accessions, namely Col-0 and N14, to evaluate seven computational tools for their ability to map and quantify Illumina single-end reads. Between 92% and 99% of the reads were mapped against the reference sequence. The raw count distributions obtained from the different tools were highly correlated. Performing a differential gene expression analysis between plants exposed to 20 °C or 4°C (cold acclimation), a large pairwise overlap between the mappers was obtained. In the second study, I obtained transcript data from ten different Oryza sativa (rice) cultivars by PacBio Isoform sequencing that can capture full-length transcripts. De novo reference transcriptomes were reconstructed resulting in 38,900 to 54,500 high-quality isoforms per cultivar. Isoforms were collapsed to reduce sequence redundancy and evaluated, e.g. for protein completeness level (BUSCO), transcript length, and number of unique transcripts per gene loci. For the heat and drought tolerant aus cultivar N22, I identified around 650 unique and novel transcripts of which 56 were significantly differentially expressed in developing seeds during combined drought and heat stress. In the last study, I measured and analyzed the changes in metabolite profiles of eight rice cultivars exposed to high night temperature (HNT) stress and grown during the dry and wet season on the field in the Philippines. Season-specific changes in metabolite levels, as well as for agronomic parameters, were identified and metabolic pathways causing a yield decline at HNT conditions suggested. In conclusion, the comparison of mapper performances can help plant scientists to decide on the right tool for their data. The de novo reconstruction of rice cultivars without a genome sequence provides a targeted, cost-efficient approach to identify novel genes responding to stress conditions for any organism. With the metabolomics approach for HNT stress in rice, I identified stress and season-specific metabolites which might be used as molecular markers for crop improvement in the future. KW - Arabidopsis thaliana KW - Oryza sativa KW - RNA-seq KW - PacBio IsoSeq KW - metabolomics KW - high night temperature KW - combined heat and drought stress KW - natural genetic variation KW - differential gene expression KW - Arabidopsis thaliana KW - Oryza sativa KW - PacBio IsoSeq KW - RNA-seq KW - kombinierter Hitze- und Trockenstress KW - erhöhte Nachttemperaturen KW - Differenzielle Genexpression KW - Metabolomik KW - natürliche genetische Variation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-509630 ER - TY - THES A1 - Moreno Curtidor, Catalina T1 - Elucidating the molecular basis of enhanced growth in the Arabidopsis thaliana accession Bur-0 N2 - The life cycle of flowering plants is a dynamic process that involves successful passing through several developmental phases and tremendous progress has been made to reveal cellular and molecular regulatory mechanisms underlying these phases, morphogenesis, and growth. Although several key regulators of plant growth or developmental phase transitions have been identified in Arabidopsis, little is known about factors that become active during embryogenesis, seed development and also during further postembryonic growth. Much less is known about accession-specific factors that determine plant architecture and organ size. Bur-0 has been reported as a natural Arabidopsis thaliana accession with exceptionally big seeds and a large rosette; its phenotype makes it an interesting candidate to study growth and developmental aspects in plants, however, the molecular basis underlying this big phenotype remains to be elucidated. Thus, the general aim of this PhD project was to investigate and unravel the molecular mechanisms underlying the big phenotype in Bur-0. Several natural Arabidopsis accessions and late flowering mutant lines were analysed in this study, including Bur-0. Phenotypes were characterized by determining rosette size, seed size, flowering time, SAM size and growth in different photoperiods, during embryonic and postembryonic development. Our results demonstrate that Bur-0 stands out as an interesting accession with simultaneously larger rosettes, larger SAM, later flowering phenotype and larger seeds, but also larger embryos. Interestingly, inter-accession crosses (F1) resulted in bigger seeds than the parental self-crossed accessions, particularly when Bur-0 was used as the female parental genotype, suggesting parental effects on seed size that might be maternally controlled. Furthermore, developmental stage-based comparisons revealed that the large embryo size of Bur-0 is achieved during late embryogenesis and the large rosette size is achieved during late postembryonic growth. Interestingly, developmental phase progression analyses revealed that from germination onwards, the length of developmental phases during postembryonic growth is delayed in Bur-0, suggesting that in general, the mechanisms that regulate developmental phase progression are shared across developmental phases. On the other hand, a detailed physiological characterization in different tissues at different developmental stages revealed accession-specific physiological and metabolic traits that underlie accession-specific phenotypes and in particular, more carbon resources during embryonic and postembryonic development were found in Bur-0, suggesting an important role of carbohydrates in determination of the bigger Bur-0 phenotype. Additionally, differences in the cellular organization, nuclei DNA content, as well as ploidy level were analyzed in different tissues/cell types and we found that the large organ size in Bur-0 can be mainly attributed to its larger cells and also to higher cell proliferation in the SAM, but not to a different ploidy level. Furthermore, RNA-seq analysis of embryos at torpedo and mature stage, as well as SAMs at vegetative and floral transition stage from Bur-0 and Col-0 was conducted to identify accession-specific genetic determinants of plant phenotypes, shared across tissues and developmental stages during embryonic and postembryonic growth. Potential candidate genes were identified and further validation of transcriptome data by expression analyses of candidate genes as well as known key regulators of organ size and growth during embryonic and postembryonic development confirmed that the high confidence transcriptome datasets generated in this study are reliable for elucidation of molecular mechanisms regulating plant growth and accession-specific phenotypes in Arabidopsis. Taken together, this PhD project contributes to the plant development research field providing a detailed analysis of mechanisms underlying plant growth and development at different levels of biological organization, focusing on Arabidopsis accessions with remarkable phenotypical differences. For this, the natural accession Bur-0 was an ideal outlier candidate and different mechanisms at organ and tissue level, cell level, metabolism, transcript and gene expression level were identified, providing a better understanding of different factors involved in plant growth regulation and mechanisms underlying different growth patterns in nature. N2 - Der Lebenszyklus blühender Pflanzen ist ein dynamischer Prozess, der das erfolgreiche Durchlaufen mehrerer Entwicklungsphasen impliziert. Es wurden enorme Fortschritte gemacht, um zelluläre und molekulare Regulationsmechanismen zu entschlüsseln, die diesen Phasen, der Morphogenese und dem Wachstum zu Grunde liegen. Obwohl mehrere Schlüsselregulatoren des Pflanzenwachstums oder der Entwicklungsphasenübergänge in Arabidopsis identifiziert wurden, ist nur wenig über Faktoren bekannt, die sowohl während der Embryogenese als auch während der Samenentwicklung und dem weiteren Wachstum aktiv werden. Noch viel weniger ist über akzessionspezifische Faktoren bekannt, die die Pflanzenarchitektur und Organgröße bestimmen. Bur-0 wurde als eine natürliche Arabidopsis-Akzession mit außergewöhnlich großen Samen und großer Blattrosette beschrieben. Ihr Phänotyp macht sie zu einem interessanten Kandidaten für die Untersuchung von Wachstums- und Entwicklungsaspekten in Pflanzen, jedoch muss die molekulare Basis, die diesem großen Phänotyp unterliegt, noch entschlüsselt werden. Daher war das allgemeine Ziel dieser Doktorarbeit, die molekularen Mechanismen, die dem großen Phänotyp in Bur-0 zu Grunde liegen, zu entschlüsseln und zu verstehen. Mehrere natürliche Arabidopsis-Akzessionen und spät blühende Mutantenlinien wurden in dieser Studie analysiert, so auch Bur-0. Die Phänotypen wurden durch eine detaillierte Analyse der Rosettengröße, der Samengröße, der Blütezeit, der Sprossapikalmeristemgröße und des Wachstums in verschiedenen Photoperioden, während der embryonalen und postembryonalen Entwicklung charakterisiert. Unsere Ergebnisse zeigen, dass Bur-0 als interessanter Akzession mit gleichzeitig größeren Blattrosetten, größerem Sprossapikalmeristem (SAM), späterem Blühphänotyp und größeren Samen, aber auch größeren Embryonen auffällt. Interessanterweise führten Kreuzungen zwischen den Akzessionen (F1) zu größeren Samen als die elterlichen selbstgekreuzten Akzessionen, insbesondere wenn Bur-0 als weiblicher elterlicher Genotyp verwendet wurde, was auf elterliche Effekte auf die Samengröße hindeutet, die möglicherweise mütterlicherseits kontrolliert werden. Darüber hinaus ergaben Vergleiche auf Basis von Entwicklungsstadien, dass die große Embryogröße von Bur-0 während der späten Embryogenese erreicht wird und die große Blattrosette während des späten postembryonalen Wachstums. Interessanterweise ergaben Analysen der Entwicklungsphasenprogression, dass ab der Keimung die Länge der Entwicklungsphasen während des postembryonalen Wachstums bei Bur-0 verzögert ist, was darauf hindeutet, dass im Allgemeinen die Mechanismen, die die Entwicklungsphasenprogression regulieren, über die Entwicklungsphasen hinweg geteilt werden. Andererseits ergab eine detaillierte physiologische Charakterisierung in verschiedenen Geweben in unterschiedlichen Entwicklungsstadien akzession-spezifische physiologische und metabolische Merkmale, die den akzession-spezifischen Phänotypen zu Grunde liegen. Insbesondere wurden mehr Kohlenstoff-Ressourcen, während der embryonalen und postembryonalen Entwicklung in Bur-0 gefunden, was auf eine wichtige Rolle von Kohlenhydraten bei der Bestimmung des größeren Bur-0-Phänotyps hindeutet. Zusätzlich wurden Unterschiede in der zellulären Organisation, dem DNA-Gehalt der Nuklei sowie dem Ploidiegrad in verschiedenen Geweben/Zelltypen analysiert und wir fanden heraus, dass die größere Organgröße in Bur-0 hauptsächlich auf die größeren Zellen und auch auf eine höhere Zellproliferation im SAM zurückzuführen ist, aber nicht auf einen anderen Ploidiegrad. Darüber hinaus wurden RNA-seq-Analysen von Embryonen im Torpedo- und Reifestadium sowie SAMs im vegetativen und Florenübergangsstadium von Bur-0 und Col-0 durchgeführt, um akzession-spezifische genetische Faktoren für Pflanzenphänotypen zu identifizieren, die in allen Geweben und Entwicklungsstadien während des embryonalen und postembryonalen Wachstums auftreten. Potenzielle Kandidatengene wurden identifiziert und eine weitere Validierung der Transkriptomdaten durch Expressionsanalysen neuartiger Kandidatengene sowie bekannter Schlüsselregulatoren für Organgröße und -wachstum während der embryonalen und postembryonalen Entwicklung bestätigte, dass die in dieser Studie generierten Transkriptomdatensätze mit hoher Zuverlässigkeit für die Aufklärung molekularer Mechanismen zur Regulierung des Pflanzenwachstums und akzessionspezifischer Phänotypen in Arabidopsis geeignet sind. Insgesamt trägt diese Doktorarbeit zur Forschung im Bereich der Pflanzenentwicklung bei, indem sie eine detaillierte Analyse der Mechanismen liefert, die dem Wachstum und der Entwicklung auf verschiedenen Ebenen der biologischen Organisation zu Grunde liegen, wobei der Schwerpunkt auf Arabidopsis-Akzessionen mit bemerkenswerten phänotypischen Unterschieden liegt. Dafür war die natürliche Akzession Bur-0 ein idealer Ausreißerkandidat und es wurden verschiedene Mechanismen auf Organ- und Gewebeebene, Zellebene, Stoffwechsel, Transkript- und Genexpressionsniveau identifiziert, was ein besseres Verständnis der verschiedenen Faktoren, die an der Regulierung des Pflanzenwachstums beteiligt sind, und der Mechanismen, die den verschiedenen Wachstumsmustern in der Natur zu Grunde liegen, ermöglicht. KW - Plant development KW - Plant growth KW - Arabidopsis thaliana KW - Phenotype KW - Transcriptome KW - Pflanzenentwicklung KW - Pflanzenwachstum KW - Arabidopsis thaliana KW - Phänotyp KW - Transkriptom Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-526814 ER - TY - THES A1 - Nikolovski, Nino T1 - Pectin: New insights from an old polymer through pectinase-based genetic screens T1 - Pektin: Neue Einblicke in ein altes Polymer durch Pektinase-basierte genetische Screens N2 - Pectic polysaccharides, a class of plant cell wall polymers, form one of the most complex networks known in nature. Despite their complex structure and their importance in plant biology, little is known about the molecular mechanism of their biosynthesis, modification, and turnover, particularly their structure-function relationship. One way to gain insight into pectin metabolism is the identification of mutants with an altered pectin structure. Those were obtained by a recently developed pectinase-based genetic screen. Arabidopsis thaliana seedlings grown in liquid medium containing pectinase solutions exhibited particular phenotypes: they were dwarfed and slightly chlorotic. However, when genetically different A. thaliana seed populations (random T-DNA insertional populations as well as EMS-mutagenized populations and natural variations) were subjected to this treatment, individuals were identified that exhibit a different visible phenotype compared to wild type or other ecotypes and may thus contain a different pectin structure (pec-mutants). After confirming that the altered phenotype occurs only when the pectinase is present, the EMS mutants were subjected to a detailed cell wall analysis with particular emphasis on pectins. This suite of mutants identified in this study is a valuable resource for further analysis on how the pectin network is regulated, synthesized and modified. Flanking sequences of some of the T-DNA lines have pointed toward several interesting genes, one of which is PEC100. This gene encodes a putative sugar transporter gene, which, based on our data, is implicated in rhamnogalacturonan-I synthesis. The subcellular localization of PEC100 was studied by GFP fusion and this protein was found to be localized to the Golgi apparatus, the organelle where pectin biosynthesis occurs. Arabidopsis ecotype C24 was identified as a susceptible one when grown with pectinases in liquid culture and had a different oligogalacturonide mass profile when compared to ecotype Col-0. Pectic oligosaccharides have been postulated to be signal molecules involved in plant pathogen defense mechanisms. Indeed, C24 showed elevated accumulation of reactive oxygen species upon pectinase elicitation and had altered response to the pathogen Alternaria brassicicola in comparison to Col-0. Using a recombinant inbred line population three major QTLs were identified to be responsible for the susceptibility of C24 to pectinases. In a reverse genetic approach members of the qua2 (putative pectin methyltransferase) family were tested for potential target genes that affect pectin methyl-esterification. The list of these genes was determined by in silico study of the pattern of expression and co-expression of all 34 members of this family resulting in 6 candidate genes. For only for one of the 6 analyzed genes a difference in the oligogalacturonide mass profile was observed in the corresponding knock-out lines, confirming the hypothesis that the methyl-esterification pattern of pectin is fine tuned by members of this gene family. This study of pectic polysaccharides through forward and reverse genetic screens gave new insight into how pectin structure is regulated and modified, and how these modifications could influence pectin mediated signalling and pathogenicity. N2 - Pektin Polysaccharide, eine Klasse pflanzlicher Zellwand Polymere, formen eine der komplexesten natürlichen Strukturen. Trotz seiner immensen Bedeutung in der Biologie der Pflanzen sind die Kenntisse über die molekularen Mechanismen der Pektin Biosynthese, dessen Modifikation und Abbau überraschend gering. Eine Möglichkeit neue Einblicke in den pflanzlichen Pektin Metabolismus zu erhalten, ist die Identifizierung von Mutanten mit veränderter Pektinstruktur. Solche Mutanten konnten durch ein neuatiges Selektionsverfahren gefunden werden. Zieht man Keimlinge der Ackerschmalwand (Arabidopsis thaliana) in Flüssigmedium mit Pektinase an, so lässt sich ein typischer Phänotyp beobachten: Die Pflanzen sind kleinwüchsig und leicht chlorotisch. Diesem Verfahren wurden Populationen verschiedener Genotypen (Insertions Linien, EMS Mutanten, natürlich vorkommende Varianten) ausgesetzt. Auf diese Weise wurden Individuen identifiziert, die gegenüber der Pektinase Behandlung eine verminderte oder erhöhte Resistenz aufweisen, was auf eine veränderte Pektinstruktur hindeutet. Die EMS Mutanten wurden einer detaillierten Zellwand Analyse unterzogen. die so in dieser Arbeit identifizierte Kollektion von Mutanten stellt eine wertvolle Ressource für weitere Forschungsansätze zur Regulation, Biosynthese und Modifikation des Pektins dar. Die Lokalisation der Insertionen in den T-DNA Linien führte zur Identifikation interessanter Gene, zu denen der putative Zuckertransporter PEC100 gehört. Dieses Gen steht vermutlich in Verbindung mit der Synthese von Rhamnogalakturonan-I, einem Bestandteil des Pektins. In dieser Arbeit konnte PEC100 im Golgi Apparat, dem Ort der Pektin Biosynthese, lokalisiert werden. Die natürlich vorkommende Variante C24 ist besonders empfindlich gegenüber der Pektinase. Diese Empfindlichkeit konnte anhand rekombinanter Inzucht Linien auf drei bedeutende quantitative Merkmalsloci (QTL) eingegrenzt werden. C24 zeigte zudem ein gegenüber der Referenz verändertes Massenprofil der Oligogalakturonide. Diese werden derzeit als Signalmoleküle in der pflanzlichen Pathogenabwehr diskutiert, was mit der in dieser Arbeit geseigten Resistenz von C24 gegenüber Schwarzfleckigkeit verursachende Pilz (Alternaria brassicicola) korreliert. In einem revers-genetischen Ansatz wurden zudem Mitglieder der Pektin Methyltransferase Familie als potentielle Enzyme getestet, die die Pektin Methylesterifikation beeinflussen könnten. Diese Mutation in einer dieser Methyltransferasen führte zu Veränderungen des Oligogalakturonid Massenprofils. Dies bestätigt die Hypothese, dass Mitglieder dieser Genfamilie an der Regulation der Methylesterifikation von Pektin beteiligt sind. Die vorliegende Studie, in der ein genetishen Selektionverfahren und Methoden der reversen Genetik kombiniert wurden, hat neue Einblicke in die Regulation und Modifikation von Pektin geliefert. KW - Pektin KW - Pektinase KW - genetischer Screen KW - Arabidopsis thaliana KW - Zellwand KW - pectin KW - pectinase KW - genetic screen KW - Arabidopsis thaliana KW - cell wall Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-35255 ER - TY - THES A1 - Krebs, Jonas T1 - Molecular and physiological characterisation of selected DOF transcription factors in the model plant Arabidopsis thaliana T1 - Molekulare und physiologische Charakterisierung ausgewählter DOF Transkriptionsfaktoren in der Modellpflanze Arabidopsis thaliana N2 - About 2,000 of the more than 27,000 genes of the genetic model plant Arabidopsis thaliana encode for transcription factors (TFs), proteins that bind DNA in the promoter region of their target genes and thus act as transcriptional activators and repressors. Since TFs play essential roles in nearly all biological processes, they are of great scientific and biotechnological interest. This thesis concentrated on the functional characterisation of four selected members of the Arabidopsis DOF-family, namely DOF1.2, DOF3.1, DOF3.5 and DOF5.2, which were selected because of their specific expression pattern in the root tip, a region that comprises the stem cell niche and cells for the perception of environmental stimuli. DOF1.2, DOF3.1 and DOF3.5 are previously uncharacterized members of the Arabidopsis DOF-family, while DOF5.2 has been shown to be involved in the phototrophic flowering response. However, its role in root development has not been described so far. To identify biological processes regulated by the four DOF proteins in detail, molecular and physiological characterization of transgenic plants with modified levels of DOF1.2, DOF3.1, DOF3.5 and DOF5.2 expression (constitutive and inducible over-expression, artificial microRNA) was performed. Additionally expression patterns of the TFs and their target genes were analyzed using promoter-GUS lines and publicly available microarray data. Finally putative protein-protein interaction partners and upstream regulating TFs were identified using the yeast two-hybrid and one-hybrid system. This combinatorial approach revealed distinct biological functions of DOF1.2, DOF3.1, DOF3.5 and DOF5.2 in the context of root development. DOF1.2 and DOF3.5 are specifically and exclusively expressed in the root cap, including the central root cap (columella) and the lateral root cap, organs which are essential to direct oriented root growth. It could be demonstrated that both genes work in the plant hormone auxin signaling pathway and have an impact on distal cell differentiation. Altered levels of gene expression lead to changes in auxin distribution, abnormal cell division patterns and altered root growth orientation. DOF3.1 and DOF5.2 share a specific expression pattern in the organizing centre of the root stem cell niche, called the quiescent centre. Both genes redundantly control cell differentiation in the root´s proximal meristem and unravel a novel transcriptional regulation pathway for genes enriched in the QC cells. Furthermore this work revealed a novel bipartite nuclear localisation signal being present in the protein sequence of the DOF TF family from all sequenced plant species. Summing up, this work provides an important input into our knowledge about the role of DOF TFs during root development. Future work will concentrate on revealing the exact regulatory networks of DOF1.2, DOF3.1, DOF3.5 and DOF5.2 and their possible biotechnological applications. N2 - Mehr noch als Tiere, die ihren Lebensraum unter widrigen Umständen verlassen können, sind Pflanzen mit einem festen Standort auf ihre Anpassungsfähigkeit angewiesen. Einen entscheidenden Beitrag dazu leistet die Genregulation, d.h. das gezielte An- und Ausschalten von Erbanlagen, den Genen. Vermittelt wird dieser Regulationsprozess unter anderem durch Transkriptionsfaktoren: Proteine, die die Fähigkeit besitzen, an bestimmte Regionen der Gene zu binden und damit deren Aktivität zu beeinflussen. In der Ackerschmalwand (Arabidopsis thaliana), die als Modellpflanze in der Genetik verwendet wird, existieren etwa 2000 solcher Transkriptionsfaktoren, eingeteilt in Familien, von denen einige auch in tierischen Organismen auftreten, andere pflanzenspezifisch sind. Auf Grund ihrer Funktion als wichtige Kontrollelemente sind sie von großem wissenschaftlichem und biotechnologischem Interesse. Im Rahmen dieser Doktorarbeit sollte die Funktion von vier pflanzenspezifischen Transkriptionsfaktoren, genannt DOF1.2, DOF3.1, DOF3.5 und DOF5.2, untersucht werden, welche durch ihre spezifische Aktivität in der Wurzelspitze der Ackerschmalwand identifiziert wurden. Um die Funktion dieser vier Regulatoren aufzuklären, wurden an der Modellpflanze gentechnische Veränderungen durchgeführt und die so veränderten, auch als transgen bezeichneten Pflanzen mit molekularbiologischen und physiologischen Methoden untersucht. Es konnte gezeigt werden, dass DOF1.2 und DOF3.5 eine wesentliche Funktion beim gerichteten Wurzelwachstum spielen und ein seitliches Wachsen der Wurzel aufgrund veränderter Umwelteinflüsse verhindern, bzw. hervorrufen können. Die beiden anderen Proteine DOF3.1 und DOF5.2 erfüllen ihre Funktion in der Stammzellnische der Wurzel. Vergleichbar mit tierischen Stammzellen sind auch pflanzliche Stammzellen nicht zu einem bestimmten Zelltyp herangereift, sondern verbleiben in einem sogenannten undifferenzierten Zustand. Es konnte gezeigt werden, dass DOF3.1 und DOF5.2 zum Erhalt dieses Zustands benötigt werden, da nach Inaktivierung beider Proteine Zellspezialisierungen auftreten, die bei gentechnisch unveränderten Pflanzen nicht auftreten. Desweiteren konnte in dieser Arbeit geklärt werden, welcher Proteinabschnitt der DOF-Proteine für ihren Transport in den Zellkern notwendig ist. Denn da die pflanzlichen Erbanlagen im Zellkern vorliegen, muss für eine Einflussnahme auf deren Aktivität zunächst ein Transport der Regulationsproteine in den Zellkern stattfinden. Zusammengenommen konnte mit dieser Doktorarbeit das Wissen über Transkriptionsfaktoren und Entwicklungsprozesse der Wurzel erheblich erweitert werden. Zudem ist die Grundlage für interessante zukünftige Arbeiten gelegt worden. Dabei wird es von zentraler Bedeutung sein, komplexe Regulationsnetzwerke verstehen zu lernen und durch gezielte Manipulationen biotechnologisch nutzen zu können. KW - DOF Transkriptionsfaktoren KW - Arabidopsis thaliana KW - Wurzel KW - Ruhezentrum KW - Columella KW - DOF transcription factors KW - Arabidopsis thaliana KW - root KW - quiescent center KW - columella Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-41831 ER -