TY - JOUR A1 - Zhang, Zhuodong A1 - Wieland, Ralf A1 - Reiche, Matthias A1 - Funk, Roger A1 - Hoffmann, Carsten A1 - Li, Yong A1 - Sommer, Michael T1 - Wind modelling for wind erosion research by open source computational fluid dynamics JF - Ecological informatics : an international journal on ecoinformatics and computational ecolog N2 - The open source computational fluid dynamics (CFD) wind model (CFD-WEM) for wind erosion research in the Xilingele grassland in Inner Mongolia (autonomous region, China) is compared with two open source CFD models Gerris and OpenFOAM. The evaluation of these models was made according to software technology, implemented methods, handling, accuracy and calculation speed. All models were applied to the same wind tunnel data set. Results show that the simplest CFD-WEM has the highest calculation speed with acceptable accuracy, and the most powerful OpenFOAM produces the simulation with highest accuracy and the lowest calculation speed. Gerris is between CFD-WEM and OpenFOAM. It calculates faster than OpenFOAM, and it is capable to solve different CFD problems. CFD-WEM is the optimal model to be further developed for wind erosion research in Inner Mongolia grassland considering its efficiency and the uncertainties of other input data. However, for other applications using CFD technology, Gerris and OpenFOAM can be good choices. This paper shows the powerful capability of open source CFD software in wind erosion study, and advocates more involvement of open source technology in wind erosion and related ecological researches. KW - Computational fluid dynamics KW - Wind modelling KW - Open source KW - Wind erosion KW - Gerris KW - OpenFOAM KW - SAMT Y1 - 2011 U6 - https://doi.org/10.1016/j.ecoinf.2011.02.001 SN - 1574-9541 VL - 6 IS - 5 SP - 316 EP - 324 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Funk, Roger A1 - Li, Yong A1 - Hoffmann, Carsten A1 - Reiche, Matthias A1 - Zhang, Zhuodong A1 - Li, Junjie A1 - Sommer, Michael T1 - Using Cs-137 to estimate wind erosion and dust deposition on grassland in Inner Mongolia-selection of a reference site and description of the temporal variability JF - Plant and soil N2 - The aims of this study were to identify areas of wind erosion and dust deposition and to quantify the effects of different grazing intensities on soil redistribution rates in grasslands based on the Cs-137 technique. Because the method uses a reference inventory as threshold for erosion or deposition, the classification of any other site as source or sink for dust depends on the accurate selection of this reference site. Measurements of Cs-137 inventories and depth distributions were carried out at pasture sites with predominant species of Stipa grandis and Leymus chinensis which are grazed with different intensities. Additional measurements were made at arable land, plant-covered sand dunes and alluvial plains. Wind-induced soil erosion and dust deposition rates were calculated from Cs-137 inventories by means of the "Profile-Distribution" and the "Mass Balance II" models. The selection of the reference site was based on fluid dynamical and process-determining parameters. The chosen site should meet the following four conditions: (i) located at a summit position with obviously low deposition rates, (ii) sufficient vegetation cover to prevent wind erosion, (iii) plane to exclude water erosion and (iv) in the wind/dust shadow of a higher elevation. The measured reference inventory of Cs-137 was 1967(+/- 102) Bqm(-2) located at a summit position of moderately grazed Leymus chinensis steppe. The Cs-137 inventories at other sites ranged from 1330 Bqm(-2) at heavily grazed sites to 5119 Bqm(-2) at river deposits, representing annual average soil losses of up to 130 tkm(-2) and deposits of up to 540 tkm(-2), respectively. The calculated annual averages of dust depositions at ungrazed Leymus chinensis sites were related to the dust storm frequencies of the last 50 years resulting in a description of the temporal variability of annual dust depositions from about 154 tkm(-2) in the 1960s to 26 tkm(-2) at recent times. Based on this quantification already 80% of the total dust depositions can be related to the 20 years between the 1960s and the end of the 1970s and only 20% to the time between 1980 and 2001. Cs-137 technique is a promising method to assess the effect of grazing intensity and land use types on the spatial variability of wind-induced soil and dust redistribution processes in semi-arid grasslands. However, considerable efforts are needed to identify a reliable reference site, because erosion and deposition induced by wind may occur at the same places. The combination of the dust deposition rates derived from Cs-137 profile data with the dust storm frequencies is helpful for a better reconstruction of the temporal variability of dust deposition and wind erosion in this region. The calculated recent deposition rates of about 20 tkm(-2) are in good agreement with data of other authors. KW - Cs-137 KW - Grassland KW - Wind erosion KW - Dust deposition KW - Reference site Y1 - 2012 U6 - https://doi.org/10.1007/s11104-011-0964-y SN - 0032-079X VL - 351 IS - 1-2 SP - 293 EP - 307 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Zhang, Zhuodong A1 - Wieland, Ralf A1 - Reiche, Matthias A1 - Funk, Roger A1 - Hoffmann, Carsten A1 - Li, Yong A1 - Sommer, Michael T1 - Identifying sensitive areas to wind erosion in the xilingele grassland by computational fluid dynamics modelling JF - Ecological informatics : an international journal on ecoinformatics and computational ecolog N2 - In order to identify the areas in the Xilingele grassland which are sensitive to wind erosion, a computational fluid dynamics model (CFD-WEM) was used to simulate the wind fields over a region of 37 km(2) which contains different topography and land use types. Previous studies revealed the important influences of topography and land use on wind erosion in the Xilingele grassland. Topography influences wind fields at large scale, and land use influences wind fields near the ground. Two steps were designed to implement the CFD wind simulation, and they were respectively to simulate the influence of topography and surface roughness on the wind. Digital elevation model (DEM) and surface roughness length were the key inputs for the CFD simulation. The wind simulation by CFD-WEM was validated by a wind data set which was measured simultaneously at six positions in the field. Three scenarios with different wind velocities were designed based on observed dust storm events, and wind fields were simulated according to these scenarios to predict the sensitive areas to wind erosion. General assumptions that cropland is the most sensitive area to wind erosion and heavily and moderately grazed grasslands are both sensitive etc. can be refined by the modelling of CFD-WEM. Aided by the results of this study, the land use planning and protection measures against wind erosion can be more efficient. Based on the case study in the Xilingele grassland, a method of regional wind erosion assessment aided by CFD wind simulation is summarized. The essence of this method is a combination of CFD wind simulation and determination of threshold wind velocity for wind erosion. Because of the physically-based simulation and the flexibility of the method, it can be generalised to other regions. KW - Sensitive areas KW - Wind erosion KW - Computational fluid dynamics KW - Grassland KW - Surface roughness Y1 - 2012 U6 - https://doi.org/10.1016/j.ecoinf.2011.12.002 SN - 1574-9541 VL - 8 IS - 5 SP - 37 EP - 47 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Reiche, Matthias A1 - Funk, Roger A1 - Zhang, Zhuodong A1 - Hoffmann, Carsten A1 - Reiche, Johannes A1 - Wehrhan, Marc A1 - Li, Yong A1 - Sommer, Michael T1 - Application of satellite remote sensing for mapping wind erosion risk and dust emission-deposition in Inner Mongolia grassland, China JF - Grassland science N2 - Intensive grazing leads to land degradation and desertification of grassland ecosystems followed by serious environmental and social problems. The Xilingol steppe grassland in Inner Mongolia, China, which has been a sink area for dust for centuries, is strongly affected by the negative effects of overgrazing and wind erosion. The aim of this study is the provision of a wind erosion risk map with a spatial high resolution of 25 m to identify actual source and sink areas. In an integrative approach, field measurements of vegetation features and surface roughness length z0 were combined with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image data for a land use classification. To determine the characteristics of the different land use classes, a field observation (ground truth) was performed in April 2009. The correlation of vegetation height and z0 (R2 = 0.8, n = 55) provided the basis for a separation of three main classes, grassland, non-vegetation and other. The integration of the soil-adjusted vegetation index (SAVI) and the spectral information from the atmospheric corrected ASTER bands 1, 2 and 3 (visible to near-infrared) led to a classification of the overall accuracy (OA) of 0.79 with a kappa () statistic of 0.74, respectively. Additionally, a digital elevation model (DEM) was used to identify topographical effects in relation to the main wind direction, which enabled a qualitative estimation of potential dust deposition areas. The generated maps result in a significantly higher description of the spatial variability in the Xilingol steppe grassland reflecting the different land use intensities on the current state of the grassland less, moderately and highly degraded. The wind erosion risk map enables the identification of characteristic mineral dust sources, sinks and transition zones. KW - Advanced Spaceborne Thermal Emission and Reflection Radiometer data KW - dust emission and deposition KW - soil-adjusted vegetation index KW - semiarid grassland KW - wind erosion Y1 - 2012 U6 - https://doi.org/10.1111/j.1744-697X.2011.00235.x SN - 1744-6961 VL - 58 IS - 1 SP - 8 EP - 19 PB - Wiley-Blackwell CY - Malden ER - TY - THES A1 - Zhang, Zhuodong T1 - A regional scale study of wind erosion in the Xilingele grassland based on computational fluid dynamics Y1 - 2011 CY - Potsdam ER -