TY - JOUR A1 - Laquai, Frederic A1 - Andrienko, Denis A1 - Deibel, Carsten A1 - Neher, Dieter T1 - Charge carrier generation, recombination, and extraction in polymer-fullerene bulk heterojunction organic solar cells JF - Elementary processes in organic photovoltaics N2 - In this chapter we review the basic principles of photocurrent generation in bulk heterojunction organic solar cells, discuss the loss channels limiting their efficiency, and present case studies of several polymer-fullerene blends. Using steady-state and transient, optical, and electrooptical techniques, we create a precise picture of the fundamental processes that ultimately govern solar cell efficiency. KW - Charge extraction KW - Charge generation KW - Charge recombination KW - Organic solar cells KW - PBT7 KW - PBTTT KW - PCPDTBT Y1 - 2026 SN - 978-3-319-28338-8 SN - 978-3-319-28336-4 U6 - https://doi.org/10.1007/978-3-319-28338-8_11 SN - 0065-3195 VL - 272 SP - 267 EP - 291 PB - Springer CY - Berlin ER - TY - JOUR A1 - Beta, Carsten A1 - Kruse, Karsten T1 - Intracellular oscillations and waves JF - Annual review of condensed matter physics N2 - Dynamic processes in living cells are highly organized in space and time. Unraveling the underlying molecular mechanisms of spatiotemporal pattern formation remains one of the outstanding challenges at the interface between physics and biology. A fundamental recurrent pattern found in many different cell types is that of self-sustained oscillations. They are involved in a wide range of cellular functions, including second messenger signaling, gene expression, and cytoskeletal dynamics. Here, we review recent developments in the field of cellular oscillations and focus on cases where concepts from physics have been instrumental for understanding the underlying mechanisms. We consider biochemical and genetic oscillators as well as oscillations that arise from chemo-mechanical coupling. Finally, we highlight recent studies of intracellular waves that have increasingly moved into the focus of this research field. KW - self-sustained oscillations KW - biochemical oscillators KW - genetic networks KW - chemomechanical coupling KW - actin waves Y1 - 2017 SN - 978-0-8243-5008-6 U6 - https://doi.org/10.1146/annurev-conmatphys-031016-025210 SN - 1947-5454 VL - 8 SP - 239 EP - 264 PB - Annual Reviews CY - Palo Alto ER - TY - JOUR A1 - Usanova, Maria E. A1 - Shprits, Yuri Y. T1 - Inner magnetosphere coupling BT - Recent advances JF - Journal of geophysical research : Space physics N2 - The dynamics of the inner magnetosphere is strongly governed by the interactions between different plasma populations that are coupled through large-scale electric and magnetic fields, currents, and wave-particle interactions. Inner magnetospheric plasma undergoes self-consistent interactions with global electric and magnetic fields. Waves excited in the inner magnetosphere from unstable particle distributions can provide energy exchange between different particle populations in the inner magnetosphere and affect the ring current and radiation belt dynamics. The ionosphere serves as an energy sink and feeds the magnetosphere back through the cold plasma outflow. The precipitating inner magnetospheric particles influence the ionosphere and upper atmospheric chemistry and affect climate. Satellite measurements and theoretical studies have advanced our understanding of the dynamics of various plasma populations in the inner magnetosphere. However, our knowledge of the coupling processes among the plasmasphere, ring current, radiation belts, global magnetic and electric fields, and plasma waves generated within these systems is still incomplete. This special issue incorporates extended papers presented at the Inner Magnetosphere Coupling III conference held 23–27 March 2015 in Los Angeles, California, USA, and includes modeling and observational contributions addressing interactions within different plasma populations in the inner magnetosphere (plasmasphere, ring current, and radiation belts), coupling between fields and plasma populations, as well as effects of the inner magnetosphere on the ionosphere and atmosphere. KW - inner magnetosphere KW - ring current KW - radiation belts KW - magnetosphere KW - ionosphere interactions KW - plasmasphere KW - solar wind Y1 - 2016 U6 - https://doi.org/10.1002/2016JA023614 SN - 2169-9380 SN - 2169-9402 VL - 122 IS - 1 SP - 102 EP - 104 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Schubert, Marcel A1 - Frisch, Johannes A1 - Allard, Sybille A1 - Preis, Eduard A1 - Scherf, Ullrich A1 - Koch, Norbert A1 - Neher, Dieter T1 - Tuning side chain and main chain order in a prototypical donor-acceptor copolymer BT - implications for optical, electronic, and photovoltaic characteristics JF - Elementary Processes in Organic Photovoltaics N2 - The recent development of donor–acceptor copolymers has led to an enormous improvement in the performance of organic solar cells and organic field-effect transistors. Here we describe the synthesis, detailed characterisation, and application of a series of structurally modified copolymers to investigate fundamental structure–property relationships in this class of conjugated polymers. The interplay between chemical structure and optoelectronic properties is investigated. These are further correlated to the charge transport and solar cell performance, which allows us to link their chemical structure to the observed physical properties. KW - Aggregate states KW - All-polymer heterojunctions KW - Alternating copolymers KW - Ambipolar charge transport KW - Ambipolar materials KW - Backbone modifications KW - Bilayer solar cells KW - Charge separation KW - Conformational disorder KW - Crystalline phases KW - Donor-acceptor copolymers KW - Electron traps KW - Energetic disorder KW - Energy-level alignment KW - Fermi-level alignment KW - Fermi-level pinning KW - Interface dipole KW - Interlayer KW - Intrachain order KW - Intragap states KW - Microscopic morphology KW - Mobility imbalance KW - Mobility relaxation KW - Monte Carlo simulation KW - Multiple trapping model KW - Nonradiative recombination KW - OFET KW - Open-circuit voltage KW - Optoelectronic properties KW - Partially alternating copolymers KW - Photo-CELIV KW - Photocurrent KW - Photovoltaic gap KW - Polymer intermixing KW - Recombination losses KW - Spectral diffusion KW - Statistical copolymers KW - Stille-type cross-coupling KW - Structure-property relationships KW - Time-dependent mobility KW - Time-of-flight (TOF) KW - Transient photocurrent KW - Ultraviolet photoelectron spectroscopy KW - Vacuum-level alignment KW - X-ray photoelectron spectroscopy Y1 - 2016 SN - 978-3-319-28338-8 SN - 978-3-319-28336-4 U6 - https://doi.org/10.1007/978-3-319-28338-8_10 SN - 0065-3195 VL - 272 SP - 243 EP - 265 PB - Springer CY - Berlin ER - TY - GEN A1 - Parsons, R. D. A1 - Schüssler, F. A1 - Garrigoux, T. A1 - Balzer, A. A1 - Füssling, Matthias A1 - Hoischen, Clemens A1 - Holler, M. A1 - Mitchell, A. A1 - Pühlhofer, G. A1 - Rowell, G. A1 - Wagner, S. A1 - Bissaldi, E. A1 - Tam, P. H. T. T1 - The HESS II GRB Observation Scheme T2 - AIP conference proceedings / American Institute of Physics N2 - Gamma-ray bursts (GRBs) are some of the Universe’s most enigmatic and exotic events. However, at energies above 10 GeV their behaviour remains largely unknown. Although space based telescopes such as the Fermi-LAT have been able to detect GRBs in this energy range, their photon statistics are limited by the small detector size. Such limitations are not present in ground based gamma-ray telescopes such as the H.E.S.S. experiment, which has now entered its second phase with the addition of a large 600 m2 telescope to the centre of the array. Such a large telescope allows H.E.S.S. to access the sub 100-GeV energy range while still maintaining a large effective collection area, helping to potentially probe the short timescale emission of these events. We present a description of the H.E.S.S. GRB observation programme, summarising the performance of the rapid GRB repointing system and the conditions under which GRB observations are initiated. Additionally we will report on the GRB follow-ups made during the 2014-15 observation campaigns. Y1 - 2017 SN - 978-0-7354-1456-3 U6 - https://doi.org/10.1063/1.4968980 SN - 0094-243X SN - 1551-7616 VL - 1792 IS - 1 PB - American Institute of Physics CY - Melville ER - TY - GEN A1 - Angüner, Ekrem Oǧuzhan A1 - Aharonian, Felix A. A1 - Bordas, Pol A1 - Casanova, Sabrina A1 - Hoischen, Clemens A1 - Oya, I. A1 - Ziegler, A. T1 - HESS J1826-130 BT - a very hard gamma-Ray spectrum source in the Galactic Plane T2 - AIP conference proceedings / American Institute of Physics N2 - HESS J1826-130 is an unidentified hard spectrum source discovered by H.E.S.S. along the Galactic plane, the spectral index being Gamma = 1.6 with an exponential cut-off at about 12 TeV. While the source does not have a clear counterpart at longer wavelengths, the very hard spectrum emission at TeV energies implies that electrons or protons accelerated up to several hundreds of TeV are responsible for the emission. In the hadronic case, the VHE emission can be produced by runaway cosmic-rays colliding with the dense molecular clouds spatially coincident with the H.E.S.S. source. Y1 - 2017 SN - 978-0-7354-1456-3 U6 - https://doi.org/10.1063/1.4968928 SN - 0094-243X SN - 1551-7616 VL - 1792 IS - 1 PB - American Institute of Physics CY - Melville ER - TY - GEN A1 - Kubatova, B. A1 - Kubát, Jiří A1 - Hamann, Wolf-Rainer A1 - Oskinova, Lida T1 - Clumping in Massive Star Winds and its Possible Connection to the B[e] Phenomenon T2 - The B(e) Phenomenon: Forty Years of Studies : proceedings of a conference held at Charles University, Prague, Czech Republic, 27 June-1 July 2016 N2 - It has been observationally established that winds of hot massive stars have highly variable characteristics. The variability evident in the winds is believed to be caused by structures on a broad range of spatial scales. Small-scale structures (clumping) in stellar winds of hot stars are possible consequence of an instability appearing in their radiation hydrodynamics. To understand how clumping may influence calculation of theoretical spectra, different clumping properties and their 3D nature have to be taken into account. Properties of clumping have been examined using our 3D radiative transfer calculations. Effects of clumping for the case of the B[e] phenomenon are discussed. Y1 - 2017 SN - 978-1-58381-900-5 SN - 978-1-58381-901-2 VL - 508 SP - 45 EP - 50 PB - Astronomical Soceity of the Pacific CY - San Fransisco ER - TY - GEN A1 - Kurfürst, P. A1 - Feldmeier, Achim A1 - Krtička, Jiri T1 - Modeling sgB[e] Circumstellar Disks T2 - The B(e) Phenomenon: Forty Years of Studies : proceedings of a conference held at Charles University, Prague, Czech Republic, 27 June-1 July 2016 N2 - During their evolution, massive stars are characterized by a significant loss of mass either via spherically symmetric stellar winds or by aspherical mass-loss mechanisms, namely outflowing equatorial disks. However, the scenario that leads to the formation of a disk or rings of gas and dust around these objects is still under debate. Is it a viscous disk or an ouftlowing disk-forming wind or some other mechanism? It is also unclear how various physical mechanisms that act on the circumstellar environment of the stars affect its shape, density, kinematic, and thermal structure. We assume that the disk-forming mechanism is a viscous transport within an equatorial outflowing disk of a rapidly or even critically rotating star. We study the hydrodynamic and thermal structure of optically thick dense parts of outflowing circumstellar disks that may form around,e.g., Be stars, sgB[e] stars, or Pop m stars. We calculate self-consistent time dependent models of the inner dense region of the disk that is strongly affected either by irradiation from the central star and by contributions of viscous heating effects. We also simulate the dynamic effects of collision between expanding ejecta of supernovae and circumstellar disks that may be form in sgB[e] stars and, e.g., LBVs or Pop in stars. Y1 - 2017 UR - https://www.physics.muni.cz/~petrk/presentation.pdf SN - 978-1-58381-900-5 SN - 978-1-58381-901-2 VL - 508 SP - 17 EP - 22 PB - Astronomical Scoeity of the Pacific CY - San Fransisco ER - TY - GEN A1 - Thoelert, Steffen A1 - Hörmann, Ulrich A1 - Antreich, Felix A1 - Meurer, Michael T1 - Ionospheric effects on high gain antenna GNSS measurements BT - TEC estimation and correction T2 - Proceedings of the 30th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2017) N2 - The ionospheric delay of global navigation satellite systems (GNSS) signals typically is compensated by adding a single correction value to the pseudorange measurement of a GNSS receiver. Yet, this neglects the dispersive nature of the ionosphere. In this context we analyze the ionospheric signal distortion beyond a constant delay. These effects become increasingly significant with the signal bandwidth and hence more important for new broadband navigation signals. Using measurements of the Galileo E5 signal, captured with a high gain antenna, we verify that the expected influence can indeed be observed and compensated. A new method to estimate the total electron content (TEC) from a single frequency high gain antenna measurement of a broadband GNSS signal is proposed and described in detail. The received signal is de facto unaffected by multi-path and interference because of the narrow aperture angle of the used antenna which should reduce the error source of the result in general. We would like to point out that such measurements are independent of code correlation, like in standard receiver applications. It is therefore also usable without knowledge of the signal coding. Results of the TEC estimation process are shown and discussed comparing to common TEC products like TEC maps and dual frequency receiver estimates. Y1 - 2017 U6 - https://doi.org/10.33012/2017.15343 SN - 2331-5911 SN - 2331-5954 SP - 3368 EP - 3374 PB - Instituite of Navigation CY - Washington ER - TY - JOUR A1 - Dahlke, Sandro A1 - Maturilli, Marion T1 - Contribution of atmospheric advection to the amplified winter warming in the arctic north atlantic region JF - Advances in meteorology N2 - Arctic Amplification of climate warming is caused by various feedback processes in the atmosphere-ocean-ice system and yields the strongest temperature increase during winter in the Arctic North Atlantic region. In our study, we attempt to quantify the advective contribution to the observed atmospheric warming in the Svalbard area. Based on radiosonde measurements from Ny-Ålesund, a strong dependence of the tropospheric temperature on the synoptic flow direction is revealed. Using FLEXTRA backward trajectories, an increase of advection from the lower latitude Atlantic region towards Ny-Ålesund is found that is attributed to a change in atmospheric circulation patterns. We find that about one-quarter (0.45 K per decade) of the observed atmospheric winter near surface warming trend in the North Atlantic region of the Arctic (2 K per decade) is due to increased advection of warm and moist air from the lower latitude Atlantic region, affecting the entire troposphere. Y1 - 2017 U6 - https://doi.org/10.1155/2017/4928620 SN - 1687-9309 SN - 1687-9317 PB - Hindawi Publ. Corp. CY - New York ER -