TY - THES A1 - Munz, Matthias T1 - Water flow and heat transport modelling at the interface between river and aquifer T1 - Wasserfluss- und Wärmetransportmodellierung an der Schnittstelle zwischen Fluss und Grundwasserleiter N2 - The functioning of the surface water-groundwater interface as buffer, filter and reactive zone is important for water quality, ecological health and resilience of streams and riparian ecosystems. Solute and heat exchange across this interface is driven by the advection of water. Characterizing the flow conditions in the streambed is challenging as flow patterns are often complex and multidimensional, driven by surface hydraulic gradients and groundwater discharge. This thesis presents the results of an integrated approach of studies, ranging from the acquisition of field data, the development of analytical and numerical approaches to analyse vertical temperature profiles to the detailed, fully-integrated 3D numerical modelling of water and heat flux at the reach scale. All techniques were applied in order to characterize exchange flux between stream and groundwater, hyporheic flow paths and temperature patterns. The study was conducted at a reach-scale section of the lowland Selke River, characterized by distinctive pool riffle sequences and fluvial islands and gravel bars. Continuous time series of hydraulic heads and temperatures were measured at different depths in the river bank, the hyporheic zone and within the river. The analyses of the measured diurnal temperature variation in riverbed sediments provided detailed information about the exchange flux between river and groundwater. Beyond the one-dimensional vertical water flow in the riverbed sediment, hyporheic and parafluvial flow patterns were identified. Subsurface flow direction and magnitude around fluvial islands and gravel bars at the study site strongly depended on the position around the geomorphological structures and on the river stage. Horizontal water flux in the streambed substantially impacted temperature patterns in the streambed. At locations with substantial horizontal fluxes the penetration depths of daily temperature fluctuations was reduced in comparison to purely vertical exchange conditions. The calibrated and validated 3D fully-integrated model of reach-scale water and heat fluxes across the river-groundwater interface was able to accurately represent the real system. The magnitude and variations of the simulated temperatures matched the observed ones, with an average mean absolute error of 0.7 °C and an average Nash Sutcliffe Efficiency of 0.87. The simulation results showed that the water and heat exchange at the surface water-groundwater interface is highly variable in space and time with zones of daily temperature oscillations penetrating deep into the sediment and spots of daily constant temperature following the average groundwater temperature. The average hyporheic flow path temperature was found to strongly correlate with the flow path residence time (flow path length) and the temperature gradient between river and groundwater. Despite the complexity of these processes, the simulation results allowed the derivation of a general empirical relationship between the hyporheic residence times and temperature patterns. The presented results improve our understanding of the complex spatial and temporal dynamics of water flux and thermal processes within the shallow streambed. Understanding these links provides a general basis from which to assess hyporheic temperature conditions in river reaches. N2 - Die Interaktion zwischen Oberflächenwasser und Grundwasser hat einen entscheidenden Einfluss auf die Wasserqualität und die ökologische Beschaffenheit von Seen, Flüssen und aquatischen Ökosystemen. Der Austausch von Wärme und gelösten Substanzen zwischen diesen beiden Kompartimenten ist maßgeblich durch die Austauschraten und die Strömungsrichtung des Wassers beeinflusst. Somit ist die Charakterisierung dieser beiden Größen in dem Übergangsbereich zwischen Oberflächenwasser und Grundwasser von besonderer Bedeutung. Diese Arbeit präsentiert die Entwicklung und Anwendung von Methoden zur Untersuchung der zeitlichen und räumlichen Dynamik des Wasser- und Wärmeflusses an der Schnittstelle zwischen Oberflächenwasser und Grundwasser. Die Arbeit besteht im Wesentlichen aus zwei Schwerpunkten. Der erste Schwerpunkt beinhaltet die Entwicklung und Bewertung von analytischen und numerischen Methoden zur Bestimmung der horizontalen Strömungsrichtung und Austauschraten unter Verwendung von kontinuierlich gemessenen Temperaturzeitreihen entlang vertikaler Profile im gesättigten Sediment. Flussbetttemperaturen können relativ einfach und kostengünstig entlang eines Flussabschnittes in verschiedenen Tiefen und unterschiedlichsten Flussbettsedimenten (organisch, sandig bis grob kiesig) gemessen werden. Die Hauptverwendung solcher Temperaturprofile ist bisher auf die analytische Quantifizierung vertikaler Austauschraten limitiert. Im Rahmen dieser Arbeit wurde ein Ansatz entwickelt, der eine punktuelle Ermittlung der horizontalen Strömungs-komponente, basierend auf der Veränderung der täglichen Temperaturamplitude mit zunehmender Tiefe, ermöglicht. Weiterhin wurde ein inverser, numerischer Ansatz entwickelt, der die ein-dimensionale Wärmetransportgleichung numerisch löst und mittels inverser Optimierungsalgorithmen die simulierten Temperaturen bestmöglich an die gemessenen Flussbetttemperaturen anpasst. Diese Methode ermöglicht die automatische, zeitlich variable Quantifizierung vertikaler Austauschraten an der Schnittstelle zwischen Oberflächenwasser und Grundwasser sowie eine einfache Unsicherheitsbetrachtung aufgrund der zugrunde liegenden Parameterunsicherheiten. Der zweite Schwerpunkt der Arbeit liegt auf der Anwendung der entwickelten Methoden und der Erstellung eines dreidimensionalen Simulationsmodelles entlang eines Flussabschnittes der Selke. Numerische Strömungs- und Stofftransportmodelle ermöglichen die gekoppelte Simulation von Fließprozessen im offenen Gerinne und im darunter liegenden porösen Medium. Die Parametrisierung des Modells erfolgte anhand empirischer Daten die im Untersuchungsgebiet detailliert erhoben wurden. Die Simulationsergebnisse zeigten zum einen gebietsspezifische Gegebenheiten auf, ermöglichten darüber hinaus jedoch auch die Beschreibung allgemeiner Muster und Zusammenhänge welche die Wasserfluss- und Wärmetransportprozesse an der Schnittstelle zwischen Oberflächenwasser und Grundwasser beeinflussen. So zeigten die Ergebnisse dieser Arbeit, dass maßgeblich die natürlich vorhandenen Flussbettstrukturen die Austauschraten und die Strömungsrichtung zwischen Oberflächenwasser und Grundwasser beeinflussen und somit den hyporheischen Austausch bestimmen. Wichtige Einflussfaktoren auf die untersuchten Austauschprozesse waren die Lage im Gerinne relativ zur Flussbettstruktur und der vorherrschende Wasserstand (Abfluss). Bedingt durch den Wasser- und Wärmeaustausch prägten sich im Untersuchungsgebiet Bereiche aus in denen die täglichen Temperaturschwingungen tief in das Sediment eindringen (Anstrombereich der Flussbettstrukturen), als auch Bereiche in denen relativ konstante Temperaturen, nahe der Grundwassertemperatur, vorherrschten. Die durchschnittliche Temperatur in der hyporheischen Zone wurde durch die saisonalen Temperaturschwankungen im Oberflächenwasser dominiert, wobei die Temperaturen entlang einzelner Fließpfade stark von der Verweilzeit des Oberflächen- oder Grundwassers im gesättigten Sediment und dem Temperaturgradienten zwischen Fluss und Grundwasser abhängig waren. Trotz der Komplexität dieser Zusammenhänge, ermöglichten die Simulationsergebnisse die Ableitung einer allgemeinen empirischen Beziehung zwischen den hyporheischen Verweilzeiten und Temperaturmustern. Sowohl die Verweilzeiten als auch die Temperatur im gesättigten Sediment haben einen entscheiden Einfluss auf biogeochemische Prozesse in dem Übergangsbereich zwischen Oberflächenwasser und Grundwasser und sind somit von besonderer Bedeutung für die Wasserqualität von Seen, Flüssen und aquatischen Ökosystemen. KW - surface water-groundwater interaction KW - Oberflächenwasser-Grundwasser Interaktion KW - hyporheic zone KW - hyporheische Zone KW - numerical modeling KW - numerische Modellierung KW - heat transport KW - Wärmetransport KW - temperature KW - Temperatur Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-404319 ER - TY - THES A1 - Wolf, Julia T1 - Schadenserkennung in Beton durch Überwachung mit eingebetteten Ultraschallprüfköpfen T1 - Monitoring with embedded ultrasound sensors to detect damage in concrete N2 - Die zerstörungsfreien Prüfungen von Bauwerken mit Hilfe von Ultraschallmessverfahren haben in den letzten Jahren an Bedeutung gewonnen. Durch Ultraschallmessungen können die Geometrien von Bauteilen bestimmt sowie von außen nicht sichtbare Fehler wie Delaminationen und Kiesnester erkannt werden. Mit neuartigen, in das Betonbauteil eingebetteten Ultraschallprüfköpfen sollen nun Bauwerke dauerhaft auf Veränderungen überprüft werden. Dazu werden Ultraschallsignale direkt im Inneren eines Bauteils erzeugt, was die Möglichkeiten der herkömmlichen Methoden der Bauwerksüberwachung wesentlich erweitert. Ein Ultraschallverfahren könnte mit eingebetteten Prüfköpfen ein Betonbauteil kontinuierlich integral überwachen und damit auch stetig fortschreitende Gefügeänderungen, wie beispielsweise Mikrorisse, registrieren. Sicherheitsrelevante Bauteile, die nach dem Einbau für Messungen unzugänglich oder mittels Ultraschall, beispielsweise durch zusätzliche Beschichtungen der Oberfläche, nicht prüfbar sind, lassen sich mit eingebetteten Prüfköpfen überwachen. An bereits vorhandenen Bauwerken können die Ultraschallprüfköpfe mithilfe von Bohrlöchern und speziellem Verpressmörtel auch nachträglich in das Bauteil integriert werden. Für Fertigbauteile bieten sich eingebettete Prüfköpfe zur Herstellungskontrolle sowie zur Überwachung der Baudurchführung als Werkzeug der Qualitätssicherung an. Auch die schnelle Schadensanalyse eines Bauwerks nach Naturkatastrophen, wie beispielsweise einem Erdbeben oder einer Flut, ist denkbar. Durch die gute Ankopplung ermöglichen diese neuartigen Prüfköpfe den Einsatz von empfindlichen Auswertungsmethoden, wie die Kreuzkorrelation, die Coda-Wellen-Interferometrie oder die Amplitudenauswertung, für die Signalanalyse. Bei regelmäßigen Messungen können somit sich anbahnende Schäden eines Bauwerks frühzeitig erkannt werden. Da die Schädigung eines Bauwerks keine direkt messbare Größe darstellt, erfordert eine eindeutige Schadenserkennung in der Regel die Messung mehrerer physikalischer Größen die geeignet verknüpft werden. Physikalische Größen können sein: Ultraschalllaufzeit, Amplitude des Ultraschallsignals und Umgebungstemperatur. Dazu müssen Korrelationen zwischen dem Zustand des Bauwerks, den Umgebungsbedingungen und den Parametern des gemessenen Ultraschallsignals untersucht werden. In dieser Arbeit werden die neuartigen Prüfköpfe vorgestellt. Es wird beschrieben, dass sie sich, sowohl in bereits errichtete Betonbauwerke als auch in der Konstruktion befindliche, einbauen lassen. Experimentell wird gezeigt, dass die Prüfköpfe in mehreren Ebenen eingebettet sein können da ihre Abstrahlcharakteristik im Beton nahezu ungerichtet ist. Die Mittenfrequenz von rund 62 kHz ermöglicht Abstände, je nach Betonart und SRV, von mindestens 3 m zwischen Prüfköpfen die als Sender und Empfänger arbeiten. Die Empfindlichkeit der eingebetteten Prüfköpfe gegenüber Veränderungen im Beton wird an Hand von zwei Laborexperimenten gezeigt, einem Drei-Punkt-Biegeversuch und einem Versuch zur Erzeugung von Frost-Tau-Wechsel Schäden. Die Ergebnisse werden mit anderen zerstörungsfreien Prüfverfahren verglichen. Es zeigt sich, dass die Prüfköpfe durch die Anwendung empfindlicher Auswertemethoden, auftretende Risse im Beton detektieren, bevor diese eine Gefahr für das Bauwerk darstellen. Abschließend werden Beispiele von Installation der neuartigen Ultraschallprüfköpfe in realen Bauteilen, zwei Brücken und einem Fundament, gezeigt und basierend auf dort gewonnenen ersten Erfahrungen ein Konzept für die Umsetzung einer Langzeitüberwachung aufgestellt. N2 - The non-destructive testing of concrete structures with the ultrasound method has become increasingly important in recent years. With the ultrasound technique the geometry of concrete elements can be determined and defects can be detected which are not visible on the surface, such as delaminations and honeycombs. New ultrasound sensors were developed to monitor changes in concrete structures continuously and permanently. Those ultrasound sensors will be embedded into the concrete to transmit and receive ultrasound waves within the structure. This allows a new interpretation of the condition of a structure. The use of the embedded sensors expands the options of the traditional monitoring methods. The ultrasonic technique could monitor a voluminous part of a concrete structure continuously and integral with just a few strategically placed embedded ultrasound sensors and thus register small changes in the concretes texture. Vital parts of concrete structures which are inaccessible for the ultrasonic method after construction can be monitored with embedded sensors. Inaccessibility could be caused by a surface layered with a medium reflecting or absorbing the ultrasonic wave or by to much steel obstruct"-ing the waves path. The sensors can be embedded into existing structures using boreholes and grouting mortar or installed during construction and can thus serve as a tool for quality control. The quick damage evaluation of a construction after a natural disaster such as an earthquake or a flood, is conceivable as well. As the contact between the embedded sensors and the surrounding concrete is assumed as constant over a long time, highly sensitive signal evaluation tools, such as the cross correlation between signals, the Coda Wave Interferometry and the amplitude evaluation, can be used. Therefore, with regular measurements, damage in a construction can be detected at an early stage. But, the damage of a structure can not be measured directly. A distinct damage detection needs a quantity of measured parameters, such as time of flight and amplitude of the ultrasonic wave as well as temperature, which need to be linked to each other. To achieve this, correlations between the state of the concrete construction and those parameters of the measured ultrasonic signal must be investigated. In this work the newly developed ultrasound sensors are introduced. Their installation into a concrete structure is described. The sensors sensitivity to small changes in the concrete is investigated and compared to other Non Destructive Testing (NDT) methods. The highly sensitive signal evaluation tools proof to be particularly advantageous when using embedded sensors. Installations of embedded ultrasound sensors for long time monitoring of real constructions are presented. Based on the gained experience with those installations a concept is presented for the set up of a long time monitoring system. KW - Ultraschall KW - Beton KW - Überwachung KW - Prüfköpfe KW - Temperatur KW - Frost-Tau-Wechsel KW - Schaden KW - Riss KW - ultrasound KW - concrete KW - monitoring KW - sensors KW - temperature KW - Freeze-Thaw-Cycles KW - damage KW - crack Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-397363 ER -