TY - THES A1 - Marc, Odin T1 - Earthquake-induced landsliding T1 - Erdbeben induzierten Hangrutschungen BT - earthquakes as erosional agents across timescales BT - Erdbeben als Erosions-Agenten über Zeitskalen N2 - Earthquakes deform Earth's surface, building long-lasting topographic features and contributing to landscape and mountain formation. However, seismic waves produced by earthquakes may also destabilize hillslopes, leading to large amounts of soil and bedrock moving downslope. Moreover, static deformation and shaking are suspected to damage the surface bedrock and therefore alter its future properties, affecting hydrological and erosional dynamics. Thus, earthquakes participate both in mountain building and stimulate directly or indirectly their erosion. Moreover, the impact of earthquakes on hillslopes has important implications for the amount of sediment and organic matter delivered to rivers, and ultimately to oceans, during episodic catastrophic seismic crises, the magnitude of life and property losses associated with landsliding, the perturbation and recovery of landscape properties after shaking, and the long term topographic evolution of mountain belts. Several of these aspects have been addressed recently through individual case studies but additional data compilation as well as theoretical or numerical modelling are required to tackle these issues in a more systematic and rigorous manner. This dissertation combines data compilation of earthquake characteristics, landslide mapping, and seismological data interpretation with physically-based modeling in order to address how earthquakes impact on erosional processes and landscape evolution. Over short time scales (10-100 s) and intermediate length scales (10 km), I have attempted to improve our understanding and ability to predict the amount of landslide debris triggered by seismic shaking in epicentral areas. Over long time scales (1-100 ky) and across a mountain belt (100 km) I have modeled the competition between erosional unloading and building of topography associated with earthquakes. Finally, over intermediate time scales (1-10 y) and at the hillslope scale (0.1-1 km) I have collected geomorphological and seismological data that highlight persistent effects of earthquakes on landscape properties and behaviour. First, I compiled a database on earthquakes that produced significant landsliding, including an estimate of the total landslide volume and area, and earthquake characteristics such as seismic moment and source depth. A key issue is the accurate conversion of landslide maps into volume estimates. Therefore I also estimated how amalgamation - when mapping errors lead to the bundling of multiple landslide into a single polygon - affects volume estimates from various earthquake-induced landslide inventories and developed an algorithm to automatically detect this artifact. The database was used to test a physically-based prediction of the total landslide area and volume caused by earthquakes, based on seismological scaling relationships and a statistical description of the landscape properties. The model outperforms empirical fits in accuracy, with 25 out of 40 cases well predicted, and allows interpretation of many outliers in physical terms. Apart from seismological complexities neglected by the model I found that exceptional rock strength properties or antecedent conditions may explain most outliers. Second, I assessed the geomorphic effects of large earthquakes on landscape dynamics by surveying the temporal evolution of precipitation-normalized landslide rate. I found strongly elevated landslide rates following earthquakes that progressively recover over 1 to 4 years, indicating that regolith strength drops and recovers. The relaxation is clearly non-linear for at least one case, and does not seem to correlate with coseismic landslide reactivation, water table level increase or tree root-system recovery. I suggested that shallow bedrock is damaged by the earthquake and then heals on annual timescales. Such variations in ground strength must be translated into shallow subsurface seismic velocities that are increasingly surveyed with ambient seismic noise correlations. With seismic noise autocorrelation I computed the seismic velocity in the epicentral areas of three earthquakes where I constrained a change in landslide rate. We found similar recovery dynamics and timescales, suggesting that seismic noise correlation techniques could be further developed to meaningfully assess ground strength variations for landscape dynamics. These two measurements are also in good agreement with the temporal dynamics of post-seismic surface displacement measured by GPS. This correlation suggests that the surface healing mechanism may be driven by tectonic deformation, and that the surface regolith and fractured bedrock may behave as a granular media that slowly compacts as it is sheared or vibrated. Last, I compared our model of earthquake-induced landsliding with a standard formulation of surface deformation caused by earthquakes to understand which parameters govern the competition between the building and destruction of topography caused by earthquakes. In contrast with previous studies I found that very large (Mw>8) earthquakes always increase the average topography, whereas only intermediate (Mw ~ 7) earthquakes in steep landscapes may reduce topography. Moreover, I illustrated how the net effect of earthquakes varies with depth or landscape steepness implying a complex and ambivalent role through the life of a mountain belt. Further I showed that faults producing a Gutenberg-Richter distribution of earthquake sizes, will limit topography over a larger range of fault sizes than faults producing repeated earthquakes with a characteristic size. N2 - Erdbeben gestalten die Erdoberfläche, sie tragen langfristig zum Aufbau von Topografie sowie zur Landschafts- und Gebirgsbildung bei. Die von Erdbeben erzeugten seismischen Erschütterungen können Gebirge jedoch auch destabilisieren und grosse Mengen an Boden sowie Grundgestein zum Abrutschen bringen und zerrüten. Erdbeben wirken daher sowohl auf die Gebirgsbildung als auch auf ihre Denudation. Ein detailliertes Verständnis der Auswirkungen von Erdbeben auf Hangstabilität ist eine wichtige Voraussetzung um die Zusammenhänge mit anderen Prozesse besser nachzuvollziehen: der kurzfristige Transport von Sedimenten und organischem Material in Flüsse und ihre Ablagerung bis in die Ozeane; der Verlust von Leben und Infrastruktur durch Hangrutschungen verbunden mit episodischen, katastrophalen, seismischen Ereignissen; die Störung und Wiederherstellung von Landschaftseigenschaften nach Erdbeben; sowie die langfristigen topographischen Entwicklung von ganzen Gebirgsketten. Einige dieser Forschungsfragen wurden kürzlich in einzelnen Fallstudien betrachtet aber zusätzliche Datenerfassung, theoretische und numerische Modellierung sind erforderlich, um diese Prozesse detaillierter zu erfassen. In dieser Dissertation werden Daten zu Eigenschaften der Erdbeben sowie aus Hangrutsch kartierungen und die Interpretation seismologischer Daten mit physikalischer Modellierung kombiniert, um die folgende übergreifende Frage zu beantworten: Wie beeinflussen Erdbeben die Erosionsprozesse in der Landschaftsentwicklung? Auf einer kurzen Zeitskala (10-100 s) und einer mittleren räumlichen Skala (10 km), habe ich versucht sowohl unser Prozessverständnis zu vertiefen als auch Vorhersagen über das gesamte Volumen der Rutschungen welche durch seismische Beben in der unmittelbaren Umgebung von Epizentren ausgelöst wurden, zu treffen und zu verbessern Auf einer langen Zeitskala (1-100 ky) und über einen Gebirgsgürtel (100 km) habe ich die durch Erdbeben ausgelösten konkurrierenden Prozesse von Abflachung von Topografie durch Erosion und den Aufbau von Topografie durch Hebung, modelliert. Auf einer mittleren Zeitskala (1-10 Jahre) und einer relativ kleinen Hangskala (0,1-1 km) habe ich geomorphologische und seismologische Daten erhoben, welche die anhaltenden Auswirkungen von Erdbeben auf Landschaftseigenschaften und deren Dynamic hervorheben. Zuerst habe ich eine Datenbank von Erdbeben erstellt, welche erhebliche Hangrutschungen ausgelöst hatten, einschliesslich einer Schätzung des gesamten Hangrutschungsvolumens und der Erdbebencharakteristiken wie z.B. seismischer Moment und Lage des Hypozentrums. Ich habe auch beurteilt, wie die Kartierung von Erdrutschen die Abschätzungen des Gesamtvolumens fehlerhaft beeinflussen können und präsentiere einen Algorithmus, um solche Fehler automatisch zu erkennen. Diese Datenbank wurde verwendet, um eine physisch-basierte Vorhersage der durch Erdbeben verursachten gesamten Hangrutschungsflächen und Volumen zu testen, welche auf seismologischen Skalierungsbeziehungen und auf einer statistischen Beschreibung der Landschaftseigenschaften basiert. Zweitens untersuchte ich den Einfluss von starken Erdbeben auf die Landschaftsdynamik durch das Vermessen der temporalen Entwicklung der Suszeptibilität von Hangrutschungen. Ich habe gezeigt, dass die stark erhöhte Hangrutschrate nach dem Erdbeben schrittweise nach einigen Jahren zurückging. Diesen Rückgang über die Zeit interpretiere ich als die Zerrüttung von oberflächennahem Gestein durch das Erdbeben und die Heilung der dadurch entstandenen Risse über der Zeit. Meine Daten deuten darauf hin, dass die Zerrüttungen und die anschliessende Heilung des Festgesteins in dem epizentralen Gebieten mit ambienten, seismischen Hintergrundrauschen überwacht werden kann. Möglicherweise wird die Heilung zusätzlich durch andauernde post-seismische Deformation angetrieben. Am Ende der Arbeit vergleiche ich meine entwickelten Modelle von erdbebenbedingten Hangrutschungen mit einer Standardformel für erdbebenverursachte Oberflächendeformierung. Mit diesem Vergleich zeige ich welche Parameter den Wettstreit zwischen der Hebung von Topografie und der gleichzeitigen Zerstörung von Topografie durch Erdbeben bestimmen. Ich zeige, dass nur mittlere - Mw ~ 7 - Erdbeben die Topografie reduzieren können im Gegensatz zu stärkeren - Mw > 8 - Beben die immer einen effektive Bildung von Topografie verursachen. Meine Ergebnisse zeigen die komplexen Zusammenhänge von Erdbeben in der Gebirgsbildung. KW - earthquake KW - landslide KW - erosion KW - Erdbeben KW - Erdrutsch KW - Erosion KW - topography KW - Topographie Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-96808 ER - TY - THES A1 - Teshebaeva, Kanayim T1 - SAR interferometry analysis of surface processes in the Pamir – Tien Shan active orogens - emphasis on coseismic deformation and landslides T1 - SAR Interferometrie Analyse von Erdoberflächen-Veränderungen im tektonisch aktiven Pamir-Tien Shan Gebirge - Schwerpunkt auf koseismische Verformung und Hangrutschungen N2 - This thesis presents new approaches of SAR methods and their application to tectonically active systems and related surface deformation. With 3 publications two case studies are presented: (1) The coseismic deformation related to the Nura earthquake (5th October 2008, magnitude Mw 6.6) at the eastern termination of the intramontane Alai valley. Located between the southern Tien Shan and the northern Pamir the coseismic surface displacements are analysed using SAR (Synthetic Aperture RADAR) data. The results show clear gradients in the vertical and horizontal directions along a complex pattern of surface ruptures and active faults. To integrate and to interpret these observations in the context of the regional active tectonics a SAR data analysis is complemented with seismological data and geological field observations. The main moment release of the Nura earthquake appears to be on the Pamir Frontal thrust, while the main surface displacements and surface rupture occurred in the footwall and along of the NE–SW striking Irkeshtam fault. With InSAR data from ascending and descending satellite tracks along with pixel offset measurements the Nura earthquake source is modelled as a segmented rupture. One fault segment corresponds to high-angle brittle faulting at the Pamir Frontal thrust and two more fault segments show moderate-angle and low-friction thrusting at the Irkeshtam fault. The integrated analysis of the coseismic deformation argues for a rupture segmentation and strain partitioning associated to the earthquake. It possibly activated an orogenic wedge in the easternmost segment of the Pamir-Alai collision zone. Further, the style of the segmentation may be associated with the presence of Paleogene evaporites. (2) The second focus is put on slope instabilities and consequent landslides in the area of prominent topographic transition between the Fergana basin and high-relief Alai range. The Alai range constitutes an active orogenic wedge of the Pamir – Tien Shan collision zone that described as a progressively northward propagating fold-and-thrust belt. The interferometric analysis of ALOS/PALSAR radar data integrates a period of 4 years (2007-2010) based on the Small Baseline Subset (SBAS) time-series technique to assess surface deformation with millimeter surface change accuracy. 118 interferograms are analyzed to observe spatially-continuous movements with downslope velocities up to 71 mm/yr. The obtained rates indicate slow movement of the deep-seated landslides during the observation time. We correlated these movements with precipitation and seismic records. The results suggest that the deformation peaks correlate with rainfall in the 3 preceding months and with one earthquake event. In the next step, to understand the spatial pattern of landslide processes, the tectonic morphologic and lithologic settings are combined with the patterns of surface deformation. We demonstrate that the lithological and tectonic structural patterns are the main controlling factors for landslide occurrence and surface deformation magnitudes. Furthermore active contractional deformation in the front of the orogenic wedge is the main mechanism to sustain relief. Some of the slower but continuously moving slope instabilities are directly related to tectonically active faults and unconsolidated young Quaternary syn-orogenic sedimentary sequences. The InSAR observed slow moving landslides represent active deep-seated gravitational slope deformation phenomena which is first time observed in the Tien Shan mountains. Our approach offers a new combination of InSAR techniques and tectonic aspects to localize and understand enhanced slope instabilities in tectonically active mountain fronts in the Kyrgyz Tien Shan. N2 - Die vorliegende Arbeit stellt neue Ansätze zu Methoden des „Synthetic Aperture Radar“ (SAR) vor und wendet diese auf tektonisch aktive Systeme und die damit einhergehende Oberflächenverformung an. In drei wissenschaftlich begutachteten Publikationen in internationalen Fachzeitschriften werden im wesentlichen zwei Fallstudien präsentiert: (1) Die koseismische Verformung in Folge des Nura-Erdbebens (5. Oktober 2008, Mw 6.6) am östlichen Rand des intramontanen Alai-Beckens. Die koseismischen Verformungen an der Erdoberfläche wurden im Bereich zwischen dem südlichen Tien Shan und dem nördlichen Pamir mit Hilfe von SAR („Synthetic Aperture Radar“) Daten analysiert. Die Ergebnisse zeigen klare, sowohl horizontale als auch vertikale Gradienten, die entlang eines komplexen Musters von Brüchen an der Oberfläche und aktiven Störungen ausgebildet sind. Um diese Beobachtungen interpretieren und in den regionalen tektonischen Zusammenhang stellen zu können, wurde die SAR-Analyse durch seismologische und geologische Felduntersuchungen ergänzt. Die hauptsächliche Freisetzung der seismischen Energie des Nura-Erdbebens scheint an der frontalen Pamir-Überschiebung erfolgt zu sein, während die Hauptverformung und Oberflächenrupturen im Liegenden und entlang der NE-SW streichenden Irkeshtam-Störung auftraten. Unter Nutzung von InSAR-Daten von den aufsteigenden und absteigenden Satelliten-Bahnen sowie von Pixel-Versatz-Messungen wurde das Nura-Erdbeben als ein segmentierter Bruch modelliert. Dabei entspricht ein Segment einer steilen spröden Verwerfung an der frontalen Pamir-Überschiebung, während zwei andere Segmente mittel-steile und reibungsarme Verwerfungen an der Irkeshtam-Störung zeigen. Die integrierte Analyse der koseismischen Deformation spricht für eine Segmentierung des Bruches und eine Verteilung der Verformung in Folge des Erdbebens. Dies hat möglicherweise einen Gebirgskeil im äußersten östlichen Teil der Pamir-Alai-Kollisionszone aktiviert. Zudem könnte die Art der Segmentierung mit der Ablagerung von Paläogenen Evaporiten assoziiert sein. (2) Der zweite Schwerpunkt wurde auf tief-liegende langsame Böschungsverformungen gelegt, die insbesondere im Gebiet des markanten Übergangs zwischen dem Fergana-Tal und dem Hochrelief der Alai-Gebirgskette ausgeprägt sind. Die Alai-Kette stellt einen aktiven Gebirgskeil der Pamir-Tien-Shan-Kollisionszone dar, welche als ein sich stufenweise nach Norden fortsetzender Falten- und Überschiebungsgürtel beschrieben wird. Die interferometrische Analyse von ALOS/PALSAR-Radardaten deckt einen Zeitraum von vier Jahren ab (2007-2010) und nutzt den „Small-Basline-Subset“ (SBAS) Zeitreihenansatz um Oberflächendeformationen mit Millimeter-Genauigkeit zu bestimmen. 118 Interferogramme wurden analysiert, um die räumlich-kontinuierlichen Bewegungen mit Hangabwärts-Geschwindigkeiten von bis zu 71 mm/Jahr zu beobachten. Die erhaltenen Raten weisen auf eine langsame Bewegung von tief-verwurzelten Hangrutschungen während der Beobachtungszeit hin. Wir korrelierten diese Bewegungen mit Niederschlags- und seismischen Beobachtungen. Die Ergebnisse deuten darauf hin, dass die größten Deformationen mit den Regenmengen der drei vorhergehenden Monate und mit einem Erdbebenereignis korrelieren. Im nächsten Schritt wurden die tektonischen und lithologischen Verhältnisse mit den Mustern der Oberflächendeformation kombiniert, um das räumliche Muster der Hangrutschungsprozesse zu verstehen. Wir zeigen, dass die lithologischen und tektonischen Strukturen die Hauptkontrollmechanismen für das Auftreten von Hangrutschungen und für den Grad der Oberflächendeformation sind. Darüber hinaus ist die aktive Kontraktion und Einengungstektonik an der Vorderseite und Front des kontinentalen Akkretionskeils der hauptsächliche Mechanismus der Relieferhaltung. Einige der langsameren aber kontinuierlich in Bewegung befindlichen Instabilitäten stehen in direktem Zusammenhang mit der tektonisch aktiven Störungen und Hebung sowie mit unkonsolidierten, jung-quartären synorogenen Molassesedimenten. Unser Ansatz bietet eine neue Kombination von InSAR-Techniken und tektonischen Aspekten um Hanginstabilitäten in tektonisch aktiven Gebirgsfronten im Kirgisischen Tien Shan zu lokalisieren und zu verstehen. KW - Synthetic Aperture Radar KW - earthquake KW - landslide KW - Pamir-Tien Shan KW - InSAR KW - Synthetic Aperture Radar KW - Erdbeeben KW - Hangrutsch KW - Pamir-Tien Shan KW - InSAR- Techniken Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-96743 ER -