TY - GEN A1 - Alirezaeizanjani, Zahra A1 - Großmann, Robert A1 - Pfeifer, Veronika A1 - Hintsche, Marius A1 - Beta, Carsten T1 - Chemotaxis strategies of bacteria with multiple run modes T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Bacterial chemotaxis-a fundamental example of directional navigation in the living world-is key to many biological processes, including the spreading of bacterial infections. Many bacterial species were recently reported to exhibit several distinct swimming modes-the flagella may, for example, push the cell body or wrap around it. How do the different run modes shape the chemotaxis strategy of a multimode swimmer? Here, we investigate chemotactic motion of the soil bacterium Pseudomonas putida as a model organism. By simultaneously tracking the position of the cell body and the configuration of its flagella, we demonstrate that individual run modes show different chemotactic responses in nutrition gradients and, thus, constitute distinct behavioral states. On the basis of an active particle model, we demonstrate that switching between multiple run states that differ in their speed and responsiveness provides the basis for robust and efficient chemotaxis in complex natural habitats. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1418 KW - instability KW - flagellum KW - exploit KW - time Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-519098 SN - 1866-8372 IS - 22 ER - TY - JOUR A1 - Saal, Christian A1 - Chaabene, Helmi A1 - Helm, Norman A1 - Warnke, Torsten A1 - Prieske, Olaf T1 - Network analysis of associations between anthropometry, physical fitness, and sport-specific performance in young canoe sprint athletes BT - The role of age and sex JF - Frontiers in sports and active living N2 - Introduction Anthropometric and physical fitness data can predict sport-specific performance (e.g., canoe sprint race time) in young athletes. Of note, inter-item correlations (i.e., multicollinearity) may exist between tests assessing similar physical qualities. However, multicollinearity among tests may change across age and/or sex due to age-/sex-specific non-linear development of test performances. Therefore, the present study aimed at analyzing inter-item correlations between anthropometric, physical fitness, and sport-specific performance data as a function of age and sex in young canoe sprint athletes. Methods Anthropometric, physical fitness, and sport-specific performance data of 618 male and 297 female young canoe sprint athletes (discipline: male/female kayak, male canoe) were recorded during a national talent identification program between 1992 and 2019. For each discipline, a correlation matrix (i.e., network analysis) was calculated for age category (U13, U14, U15, U16) and sex including anthropometrics (e.g., standing body height, body mass), physical fitness (e.g., cardiorespiratory endurance, muscle power), and sport-specific performance (i.e., 250 and 2,000-m on-water canoe sprint time). Network plots were used to explore the correlation patterns by visual inspection. Further, trimmed means (mu(trimmed)) of inter-item Pearson's correlations coefficients were calculated for each discipline, age category, and sex. Effects of age and sex were analyzed using one-way ANOVAs. Results Visual inspection revealed consistent associations among anthropometric measures across age categories, irrespective of sex. Further, associations between physical fitness and sport-specific performance were lower with increasing age, particularly in males. In this sense, statistically significant differences for mu(trimmed) were observed in male canoeists (p < 0.01, xi = 0.36) and male kayakers (p < 0.01, xi = 0.38) with lower mu(trimmed) in older compared with younger athletes (i.e., >= U15). For female kayakers, no statistically significant effect of age on mu(trimmed) was observed (p = 0.34, xi = 0.14). Discussion Our study revealed that inter-item correlation patterns (i.e., multicollinearity) of anthropometric, physical fitness, and sport-specific performance measures were lower in older (U15, U16) versus younger (U13, U14) male canoe sprint athletes but not in females. Thus, age and sex should be considered to identify predictors for sport-specific performance and design effective testing batteries for talent identification programs in canoe sprint athletes. KW - talent identification KW - youth sports [MeSH] KW - athletic performance KW - race KW - time KW - relationship KW - multicollinearity Y1 - 2022 U6 - https://doi.org/10.3389/fspor.2022.1038350 SN - 2624-9367 VL - 4 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Mauerberger, Stefan A1 - Schanner, Maximilian Arthus A1 - Korte, Monika A1 - Holschneider, Matthias T1 - Correlation based snapshot models of the archeomagnetic field JF - Geophysical journal international N2 - For the time stationary global geomagnetic field, a new modelling concept is presented. A Bayesian non-parametric approach provides realistic location dependent uncertainty estimates. Modelling related variabilities are dealt with systematically by making little subjective apriori assumptions. Rather than parametrizing the model by Gauss coefficients, a functional analytic approach is applied. The geomagnetic potential is assumed a Gaussian process to describe a distribution over functions. Apriori correlations are given by an explicit kernel function with non-informative dipole contribution. A refined modelling strategy is proposed that accommodates non-linearities of archeomagnetic observables: First, a rough field estimate is obtained considering only sites that provide full field vector records. Subsequently, this estimate supports the linearization that incorporates the remaining incomplete records. The comparison of results for the archeomagnetic field over the past 1000 yr is in general agreement with previous models while improved model uncertainty estimates are provided. KW - geopotential theory KW - archaeomagnetism KW - magnetic field variations through KW - time KW - palaeomagnetism KW - inverse theory KW - statistical methods Y1 - 2020 U6 - https://doi.org/10.1093/gji/ggaa336 SN - 0956-540X SN - 1365-246X VL - 223 IS - 1 SP - 648 EP - 665 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Pätzig, Marlene A1 - Kalettka, Thomas A1 - Onandia, Gabriela A1 - Balla, Dagmar A1 - Lischeid, Gunnar T1 - How much information do we gain from multiple-year sampling in natural pond research? JF - Limnologica : ecology and management of inland waters N2 - Natural ponds are perceived as spatially and temporally highly variable ecosystems. This perception is in contrast to the often-applied sampling design with high spatial but low temporal replication. Based on a data set covering a period of six years and 20 permanently to periodically inundated ponds, we investigated whether this widely applied sampling design is sufficient to identify differences between single ponds or single years with regard to water quality and macrophyte community composition as measures of ecosystem integrity. In our study, the factor "pond", which describes differences between individual ponds, explained 56 % and 63 %, respectively, of the variance in water quality and macrophyte composition. In contrast, the factor "year" that refers to changes between individual years, contributed less to understand the observed variability in water quality and macrophyte composition (10 % and 7 % respectively, of the variance explained). The low explanation of variance for "year" and the low year-to-year correlation for the single water quality parameter or macrophyte coverage values, respectively, indicated high but non-consistent temporal variability affecting individual pond patterns. In general, the results largely supported the ability of the widely applied sampling strategy with about one sampling date per year to capture differences in water quality and macrophyte community composition between ponds. Hence, future research can be rest upon sampling designs that give more weight to the number of ponds than the number of years in dependence on the research question and the available resources. Nonetheless, pond research would miss a substantial amount of information (7 to 10 % of the variance explained), when the sampling would generally be restricted to one year. Moreover, we expect that the importance of multiple-year sampling will likely increase in periods and regions of higher hydrological variability compared to the average hydrological conditions encountered in the studied period. KW - water quality KW - macrophytes KW - space KW - time KW - kettle holes KW - conservation Y1 - 2020 U6 - https://doi.org/10.1016/j.limno.2019.125728 SN - 0075-9511 SN - 1873-5851 VL - 80 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Thiele, Dirk A1 - Prieske, Olaf A1 - Chaabene, Helmi A1 - Granacher, Urs T1 - Effects of strength training on physical fitness and sport-specific performance in recreational, sub-elite, and elite rowers BT - a systematic review with meta-analysis JF - Journal of sports sciences N2 - The purpose of this systematic review with meta-analysis was to examine the effects of strength training (ST) on selected components of physical fitness (e.g., lower/upper limb maximal strength, muscular endurance, jump performance, cardiorespiratory endurance) and sport-specific performance in rowers. Only studies with an active control group were included if they examined the effects of ST on at least one proxy of physical fitness and/or sport-specific performance in rowers. Weighted and averaged standardized mean differences (SMD) were calculated using random-effects models. Subgroup analyses were computed to identify effects of ST type or expertise level on sport-specific performance. Our analyses revealed significant small effects of ST on lower limb maximal strength (SMD = 0.42, p = 0.05) and on sport-specific performance (SMD = 0.32, p = 0.05). Non-significant effects were found for upper limb maximal strength, upper/lower limb muscular endurance, jump performance, and cardiorespiratory endurance. Subgroup analyses for ST type and expertise level showed non-significant differences between the respective subgroups of rowers (p >= 0.32). Our systematic review with meta-analysis indicated that ST is an effective means for improving lower limb maximal strength and sport-specific performance in rowers. However, ST-induced effects are neither modulated by ST type nor rowers' expertise level. KW - resistance training KW - plyometric training KW - on-water performance KW - race KW - time KW - oarsmen KW - athletic performance Y1 - 2020 U6 - https://doi.org/10.1080/02640414.2020.1745502 SN - 0264-0414 SN - 1466-447X VL - 38 IS - 10 SP - 1186 EP - 1195 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Alirezaeizanjani, Zahra A1 - Großmann, Robert A1 - Pfeifer, Veronika A1 - Hintsche, Marius A1 - Beta, Carsten T1 - Chemotaxis strategies of bacteria with multiple run modes JF - Science advances N2 - Bacterial chemotaxis-a fundamental example of directional navigation in the living world-is key to many biological processes, including the spreading of bacterial infections. Many bacterial species were recently reported to exhibit several distinct swimming modes-the flagella may, for example, push the cell body or wrap around it. How do the different run modes shape the chemotaxis strategy of a multimode swimmer? Here, we investigate chemotactic motion of the soil bacterium Pseudomonas putida as a model organism. By simultaneously tracking the position of the cell body and the configuration of its flagella, we demonstrate that individual run modes show different chemotactic responses in nutrition gradients and, thus, constitute distinct behavioral states. On the basis of an active particle model, we demonstrate that switching between multiple run states that differ in their speed and responsiveness provides the basis for robust and efficient chemotaxis in complex natural habitats. KW - exploit KW - flagellum KW - instability KW - time Y1 - 2020 U6 - https://doi.org/10.1126/sciadv.aaz6153 SN - 2375-2548 VL - 6 IS - 22 PB - American Association for the Advancement of Science CY - Washington ER - TY - GEN A1 - Schaefer, Laura A1 - Bittmann, Frank T1 - Paired personal interaction reveals objective differences between pushing and holding isometric muscle action T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - In sports and movement sciences isometric muscle function is usually measured by pushing against a stable resistance. However, subjectively one can hold or push isometrically. Several investigations suggest a distinction of those forms. The aim of this study was to investigate whether these two forms of isometric muscle action can be distinguished by objective parameters in an interpersonal setting. 20 subjects were grouped in 10 same sex pairs, in which one partner should perform the pushing isometric muscle action (PIMA) and the other partner executed the holding isometric muscle action (HIMA). The partners had contact at the distal forearms via an interface, which included a strain gauge and an acceleration sensor. The mechanical oscillations of the triceps brachii (MMGtri) muscle, its tendon (MTGtri) and the abdominal muscle (MMGobl) were recorded by a piezoelectric-sensor-based measurement system. Each partner performed three 15s (80% MVIC) and two fatiguing trials (90% MVIC) during PIMA and HIMA, respectively. Parameters to compare PIMA and HIMA were the mean frequency, the normalized mean amplitude, the amplitude variation, the power in the frequency range of 8 to 15 Hz, a special power-frequency ratio and the number of task failures during HIMA or PIMA (partner who quit the task). A “HIMA failure” occurred in 85% of trials (p < 0.001). No significant differences between PIMA and HIMA were found for the mean frequency and normalized amplitude. The MMGobl showed significantly higher values of amplitude variation (15s: p = 0.013; fatiguing: p = 0.007) and of power-frequency-ratio (15s: p = 0.040; fatiguing: p = 0.002) during HIMA and a higher power in the range of 8 to 15 Hz during PIMA (15s: p = 0.001; fatiguing: p = 0.011). MMGtri and MTGtri showed no significant differences. Based on the findings it is suggested that a holding and a pushing isometric muscle action can be distinguished objectively, whereby a more complex neural control is assumed for HIMA. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 714 KW - neural-control KW - task failure KW - lengthening contractions KW - force KW - oscillations KW - load KW - time KW - synchronization KW - activation KW - principles Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-519119 SN - 1866-8364 IS - 714 ER - TY - JOUR A1 - Schaefer, Laura A1 - Bittmann, Frank T1 - Paired personal interaction reveals objective differences between pushing and holding isometric muscle action JF - PLOS One N2 - In sports and movement sciences isometric muscle function is usually measured by pushing against a stable resistance. However, subjectively one can hold or push isometrically. Several investigations suggest a distinction of those forms. The aim of this study was to investigate whether these two forms of isometric muscle action can be distinguished by objective parameters in an interpersonal setting. 20 subjects were grouped in 10 same sex pairs, in which one partner should perform the pushing isometric muscle action (PIMA) and the other partner executed the holding isometric muscle action (HIMA). The partners had contact at the distal forearms via an interface, which included a strain gauge and an acceleration sensor. The mechanical oscillations of the triceps brachii (MMGtri) muscle, its tendon (MTGtri) and the abdominal muscle (MMGobl) were recorded by a piezoelectric-sensor-based measurement system. Each partner performed three 15s (80% MVIC) and two fatiguing trials (90% MVIC) during PIMA and HIMA, respectively. Parameters to compare PIMA and HIMA were the mean frequency, the normalized mean amplitude, the amplitude variation, the power in the frequency range of 8 to 15 Hz, a special power-frequency ratio and the number of task failures during HIMA or PIMA (partner who quit the task). A “HIMA failure” occurred in 85% of trials (p < 0.001). No significant differences between PIMA and HIMA were found for the mean frequency and normalized amplitude. The MMGobl showed significantly higher values of amplitude variation (15s: p = 0.013; fatiguing: p = 0.007) and of power-frequency-ratio (15s: p = 0.040; fatiguing: p = 0.002) during HIMA and a higher power in the range of 8 to 15 Hz during PIMA (15s: p = 0.001; fatiguing: p = 0.011). MMGtri and MTGtri showed no significant differences. Based on the findings it is suggested that a holding and a pushing isometric muscle action can be distinguished objectively, whereby a more complex neural control is assumed for HIMA. KW - neural-control KW - task failure KW - lengthening contractions KW - force KW - oscillations KW - load KW - time KW - synchronization KW - activation KW - principles Y1 - 2021 U6 - https://doi.org/10.1371/journal.pone.0238331 SN - 1932-6203 VL - 16 IS - 5 PB - PLOS CY - San Francisco ER - TY - GEN A1 - Güntner, Andreas A1 - Reich, Marvin A1 - Mikolaj, Michal A1 - Creutzfeldt, Benjamin A1 - Schroeder, Stephan A1 - Wziontek, Hartmut T1 - Landscape-scale water balance monitoring with an iGrav superconducting gravimeter in a field enclosure T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - In spite of the fundamental role of the landscape water balance for the Earth's water and energy cycles, monitoring the water balance and its components beyond the point scale is notoriously difficult due to the multitude of flow and storage processes and their spatial heterogeneity. Here, we present the first field deployment of an iGrav superconducting gravimeter (SG) in a minimized enclosure for long-term integrative monitoring of water storage changes. Results of the field SG on a grassland site under wet-temperate climate conditions were compared to data provided by a nearby SG located in the controlled environment of an observatory building. The field system proves to provide gravity time series that are similarly precise as those of the observatory SG. At the same time, the field SG is more sensitive to hydrological variations than the observatory SG. We demonstrate that the gravity variations observed by the field setup are almost independent of the depth below the terrain surface where water storage changes occur (contrary to SGs in buildings), and thus the field SG system directly observes the total water storage change, i.e., the water balance, in its surroundings in an integrative way. We provide a framework to single out the water balance components actual evapotranspiration and lateral subsurface discharge from the gravity time series on annual to daily timescales. With about 99 and 85% of the gravity signal due to local water storage changes originating within a radius of 4000 and 200m around the instrument, respectively, this setup paves the road towards gravimetry as a continuous hydrological field-monitoring technique at the landscape scale. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 663 KW - gravity measurements KW - local hydrology KW - storage changes KW - noise-levels KW - time KW - system KW - attraction KW - athmosphere KW - surface Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-419105 SN - 1866-8372 IS - 663 ER - TY - GEN A1 - Agarwal, Ankit A1 - Marwan, Norbert A1 - Maheswaran, Rathinasamy A1 - Merz, Bruno A1 - Kurths, Jürgen T1 - Multi-scale event synchronization analysis for unravelling climate processes BT - a wavelet-based approach T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The temporal dynamics of climate processes are spread across different timescales and, as such, the study of these processes at only one selected timescale might not reveal the complete mechanisms and interactions within and between the (sub-) processes. To capture the non-linear interactions between climatic events, the method of event synchronization has found increasing attention recently. The main drawback with the present estimation of event synchronization is its restriction to analysing the time series at one reference timescale only. The study of event synchronization at multiple scales would be of great interest to comprehend the dynamics of the investigated climate processes. In this paper, the wavelet-based multi-scale event synchronization (MSES) method is proposed by combining the wavelet transform and event synchronization. Wavelets are used extensively to comprehend multi-scale processes and the dynamics of processes across various timescales. The proposed method allows the study of spatio-temporal patterns across different timescales. The method is tested on synthetic and real-world time series in order to check its replicability and applicability. The results indicate that MSES is able to capture relationships that exist between processes at different timescales. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 661 KW - precipitation KW - phase KW - EEG KW - desynchronization KW - interdependences KW - coherence KW - networks KW - monsoon KW - models KW - time Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-418274 SN - 1866-8372 IS - 661 ER -