TY - THES A1 - Lauer-Dünkelberg, Gregor T1 - Extensional deformation and landscape evolution of the Central Andean Plateau T1 - Dehnungsdeformation und Landschaftsentwicklung des zentralen Andenplateaus N2 - Mountain ranges can fundamentally influence the physical and and chemical processes that shape Earths’ surface. With elevations of up to several kilometers they create climatic enclaves by interacting with atmospheric circulation and hydrologic systems, thus leading to a specific distribution of flora and fauna. As a result, the interiors of many Cenozoic mountain ranges are characterized by an arid climate, internally drained and sediment-filled basins, as well as unique ecosystems that are isolated from the adjacent humid, low-elevation regions along their flanks and forelands. These high-altitude interiors of orogens are often characterized by low relief and coalesced sedimentary basins, commonly referred to as plateaus, tectono-geomorphic entities that result from the complex interactions between mantle-driven geological and tectonic conditions and superposed atmospheric and hydrological processes. The efficiency of these processes and the fate of orogenic plateaus is therefore closely tied to the balance of constructive and destructive processes – tectonic uplift and erosion, respectively. In numerous geological studies it has been shown that mountain ranges are delicate systems that can be obliterated by an imbalance of these underlying forces. As such, Cenozoic mountain ranges might not persist on long geological timescales and will be destroyed by erosion or tectonic collapse. Advancing headward erosion of river systems that drain the flanks of the orogen may ultimately sever the internal drainage conditions and the maintenance of storage of sediments within the plateau, leading to destruction of plateau morphology and connectivity with the foreland. Orogenic collapse may be associated with the changeover from a compressional stress field with regional shortening and topographic growth, to a tensional stress field with regional extensional deformation and ensuing incision of the plateau. While the latter case is well-expressed by active extensional faults in the interior parts of the Tibetan Plateau and the Himalaya, for example, the former has been attributed to have breached the internally drained areas of the high-elevation sectors of the Iranian Plateau. In the case of the Andes of South America and their internally drained Altiplano-Puna Plateau, signs of both processes have been previously described. However, in the orogenic collapse scenario the nature of the extensional structures had been primarily investigated in the northern and southern terminations of the plateau; in some cases, the extensional faults were even regarded to be inactive. After a shallow earthquake in 2020 within the Eastern Cordillera of Argentina that was associated with extensional deformation, the state of active deformation and the character of the stress field in the central parts of the plateau received renewed interest to explain a series of extensional structures in the northernmost sectors of the plateau in north-western Argentina. This study addresses (1) the issue of tectonic orogenic collapse of the Andes and the destruction of plateau morphology by studying the fill and erosion history of the central eastern Andean Plateau using sedimentological and geochronological data and (2) the kinematics, timing and magnitude of extensional structures that form well-expressed fault scarps in sediments of the regional San Juan del Oro surface, which is an integral part of the Andean Plateau and adjacent morphotectonic provinces to the east. Importantly, sediment properties and depositional ages document that the San Juan del Oro Surface was not part of the internally-drained Andean Plateau, but rather associated with a foreland-directed drainage system, which was modified by the Andean orogeny and that became successively incorporated into the orogen by the eastward-migration of the Andean deformation front during late Miocene – Pliocene time. Structural and geomorphic observations within the plateau indicate that extensional processes must have been repeatedly active between the late Miocene and Holocene supporting the notion of plateau-wide extensional processes, potentially associated with Mw ~ 7 earthquakes. The close relationship between extensional joints and fault orientations underscores that 3 was oriented horizontally in NW-SE direction and 1 was vertical. This unambiguously documents that the observed deformation is related to gravitational forces that drive the orogenic collapse of the plateau. Applied geochronological analyses suggest that normal faulting in the northern Puna was active at about 3 Ma, based on paired cosmogenic nuclide dating of sediment fill units. Possibly due to regional normal faulting the drainage system within the plateau was modified, promoting fluvial incision. N2 - Gebirge beeinflussen grundlegend die physikalischen und chemischen Prozesse, die die Oberfläche der Erde formen. Mit Höhen von bis zu mehreren Tausend Metern können sie als topografische Barrieren fungieren, die mit atmosphärischen Zirkulationen und hydrologischen Systemen wechselwirken, klimatische Enklaven schaffen und dadurch die Verbreitung von Flora und Fauna einschränken. Infolgedessen sind die inneren Teile vieler känozoischer Gebirge durch geschlossene Beckenstrukturen gekennzeichnet, die einzigartige, von den niedriger gelegenen Bereichen des Vorlands isolierte Ökosysteme beherbergen. Diese durch niedriges Relief geprägte orographische Sektoren werden als Plateaus bezeichnet - das Ergebnis komplexer Wechselwirkungen geologischer, hydrologischer und atmosphärischer Prozesse. Das Fortbestehen solcher orogenen Plateaus ist daher an das Gleichgewicht zwischen den konstruktiven und destruktiven Prozessen, tektonischer Hebung und Erosion gebunden. Aus geologischen Studien geht hervor, dass Gebirgszüge fragile Systeme sind, die durch ein Ungleichgewicht dieser zugrunde liegenden Kräfte kollabieren können. Daher erscheint es unumgänglich, dass moderne Gebirge auf geologischen Zeitskalen nicht überdauern werden und voraussichtlich dem Zahn der Zeit zum Opfer fallen. Viele Studien haben sich bereits mit der Aufgabe befasst, den momentanen Zustand känozoischer Gebirge zu erforschen, um zu entschlüsseln, ob sie bereits in eine Einebnungsphase übergegangen sind. Eine solche Einebnung kann auf zwei oberflächliche Anzeichen zurückgeführt werden: i) die fortschreitende Erosion durch Flusssysteme und ii) das Vorhandensein von Extensionsstrukturen, die sich entgegen des kompressiven Spannungsfelds durch Gravitationskräfte formen. Solche Strukturen wurden bereits im Inneren des tibetischen Plateaus des zentralasiatischen Himalaya beschrieben, während eine plateauweite Einschneidung durch Flusssysteme die intern entwässerten Gebiete der hoch gelegenen Sektoren des iranischen Plateaus beobachtet wurde. Im Falle der südamerikanischen Anden und ihres intern entwässerten Altiplano-Puna-Plateaus wurden bereits Anzeichen beider Prozesse beschrieben. Im Szenario des orogenen Kollapses wurden Dehnungsstrukturen jedoch hauptsächlich an den nördlichen und südlichen Grenzen des Plateaus untersucht; in einigen Fällen wurden diese tektonischen Verwerfungen als inaktiv kategorisiert. Nach einem flachen Erdbeben im Jahr 2020 in der Ostkordillere Argentiniens, das mit solch einer Dehnungsstruktur in Verbindung gebracht wurde, weckte die Frage nach dem Zustand des aktiven Spannungsfeldes und der damit einhergehenden Deformation in den zentralen Teilen der Anden wieder neues Interesse. Die Analyse solcher Strukturen und die daraus resultierenden Erkenntnisse, würden helfen die quartäre Deformation in den hoch gelegenen Gebieten der Anden zu erklären. Diese Dissertation befasst sich daher mit (1) der Frage des tektonisch-orogenen Zusammenbruchs der Anden und der Einschneidung in die Plateaumorphologie, indem die Auffüllungs- und Erosionsgeschichte des zentralen östlichen Andenplateaus anhand von sedimentologischen und geochronologischen Daten untersucht wird, und (2) mit der Kinematik, dem zeitlichen Ablauf und dem Ausmaß von Dehnungsdeformation, die ausgeprägte Geländestufen in den sölig gelagerten Sedimenten der regionalen San Juan del Oro-Oberfläche formte, die wiederum ein integraler Bestandteil des Andenplateaus und der angrenzenden morphotektonischen Provinzen im Osten ist. Die Eigenschaften der beschriebenen Sedimente sowie deren Ablagerungsalter belegen, dass die San Juan del Oro-Oberfläche nicht Teil des intern entwässerten Andenplateaus ist, sondern vielmehr mit einem vorgelagerten Entwässerungssystem verbunden ist, das durch die Anden-Orogenese und die Ostwärtsbewegung der Deformationsfront im späten Miozän bis Pliozän sukzessive in das Orogen integriert wurde. Strukturelle und geomorphologische Beobachtungen innerhalb des Plateaus deuten darauf hin, dass eine tektonische Abschiebungen zwischen dem späten Miozän und dem Holozän wiederholt aktiv gewesen sein müssen, und möglicherweise mit Erdbeben der Stärke Mw ~ 7 in Verbindung standen. Die geometrische Beziehung zwischen Dehnungsklüften und dem Streichen der beobachteten Verwerfungen deutet darauf hin, dass die geringste Normalspannung (σ3) horizontal in NW-SE-Richtung und die maximale Normalspannung (σ1) vertikal orientiert war. Dies ist ein eindeutiger Beleg dafür, dass die beobachtete Deformation mit Gravitationskräften zusammenhängt, die den orogenen Kollaps des Plateaus vorantreiben. Geochronologische Daten deuten darauf hin, dass die Abschiebungen in der nördlichen Puna vor ca. 3 Ma aktiv waren. Möglicherweise wurde dadurch auch das Entwässerungssystem innerhalb des Plateaus beeinflusst, was eine fluviale Einschneidung begünstigte und den Zerfall des Plateaus vorantreibt. KW - Andes KW - plateau KW - extension KW - tectonics KW - normal faulting KW - geodynamics KW - geology KW - Anden KW - Dehnungsdeformation KW - Geodynamik KW - Geologie KW - Verwerfungen KW - Hochplateau KW - Tektonik KW - surface exposure dating KW - uranium-lead-dating KW - Remote sensing KW - paleoseismology KW - Oberflächenexpositionsdatierung KW - Uran-Blei-Datierung KW - Fernerkundung KW - Paleoseismologie Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-617593 ER - TY - JOUR A1 - Scherler, Dirk A1 - Schwanghart, Wolfgang T1 - Drainage divide networks BT - Part 2: Response to perturbations JF - Earth surface dynamics N2 - Drainage divides are organized into tree-like networks that may record information about drainage divide mobility. However, views diverge about how to best assess divide mobility. Here, we apply a new approach of automatically extracting and ordering drainage divide networks from digital elevation models to results from landscape evolution model experiments. We compared landscapes perturbed by strike-slip faulting and spatiotemporal variations in erodibility to a reference model to assess which topographic metrics (hillslope relief, flow distance, and chi) are diagnostic of divide mobility. Results show that divide segments that are a minimum distance of similar to 5 km from river confluences strive to attain constant values of hillslope relief and flow distance to the nearest stream. Disruptions of such patterns can be related to mobile divides that are lower than stable divides, closer to streams, and often asymmetric in shape. In general, we observe that drainage divides high up in the network, i.e., at great distances from river confluences, are more susceptible to disruptions than divides closer to these confluences and are thus more likely to record disturbance for a longer time period. We found that across-divide differences in hillslope relief proved more useful for assessing divide migration than other tested metrics. However, even stable drainage divide networks exhibit across-divide differences in any of the studied topographic metrics. Finally, we propose a new metric to quantify the connectivity of divide junctions. KW - dynamics KW - landscape evolution KW - low-relief KW - patterns KW - river KW - scale KW - tectonics Y1 - 2020 U6 - https://doi.org/10.5194/esurf-8-261-2020 SN - 2196-6311 SN - 2196-632X VL - 8 IS - 2 SP - 261 EP - 274 PB - Copernicus CY - Göttingen ER - TY - THES A1 - Pons, Michaël T1 - The Nature of the tectonic shortening in Central Andes T1 - Die Beschaffenheit der tektonischen Verkürzung in den Zentralanden N2 - The Andean Cordillera is a mountain range located at the western South American margin and is part of the Eastern- Circum-Pacific orogenic Belt. The ~7000 km long mountain range is one of the longest on Earth and hosts the second largest orogenic plateau in the world, the Altiplano-Puna plateau. The Andes are known as a non-collisional subduction-type orogen which developed as a result of the interaction between the subducted oceanic Nazca plate and the South American continental plate. The different Andean segments exhibit along-strike variations of morphotectonic provinces characterized by different elevations, volcanic activity, deformation styles, crustal thickness, shortening magnitude and oceanic plate geometry. Most of the present-day elevation can be explained by crustal shortening in the last ~50 Ma, with the shortening magnitude decreasing from ~300 km in the central (15°S-30°S) segment to less than half that in the southern part (30°S-40°S). Several factors were proposed that might control the magnitude and acceleration of shortening of the Central Andes in the last 15 Ma. One important factor is likely the slab geometry. At 27-33°S, the slab dips horizontally at ~100 km depth due to the subduction of the buoyant Juan Fernandez Ridge, forming the Pampean flat-slab. This horizontal subduction is thought to influence the thermo-mechanical state of the Sierras Pampeanas foreland, for instance, by strengthening the lithosphere and promoting the thick-skinned propagation of deformation to the east, resulting in the uplift of the Sierras Pampeanas basement blocks. The flat-slab has migrated southwards from the Altiplano latitude at ~30 Ma to its present-day position and the processes and consequences associated to its passage on the contemporaneous acceleration of the shortening rate in Central Andes remain unclear. Although the passage of the flat-slab could offer an explanation to the acceleration of the shortening, the timing does not explain the two pulses of shortening at about 15 Ma and 4 Ma that are suggested from geological observations. I hypothesize that deformation in the Central Andes is controlled by a complex interaction between the subduction dynamics of the Nazca plate and the dynamic strengthening and weakening of the South American plate due to several upper plate processes. To test this hypothesis, a detailed investigation into the role of the flat-slab, the structural inheritance of the continental plate, and the subduction dynamics in the Andes is needed. Therefore, I have built two classes of numerical thermo-mechanical models: (i) The first class of models are a series of generic E-W-oriented high-resolution 2D subduction models thatinclude flat subduction in order to investigate the role of the subduction dynamics on the temporal variability of the shortening rate in the Central Andes at Altiplano latitudes (~21°S). The shortening rate from the models was then validated with the observed tectonic shortening rate in the Central Andes. (ii) The second class of models are a series of 3D data-driven models of the present-day Pampean flat-slab configuration and the Sierras Pampeanas (26-42°S). The models aim to investigate the relative contribution of the present-day flat subduction and inherited structures in the continental lithosphere on the strain localization. Both model classes were built using the advanced finite element geodynamic code ASPECT. The first main finding of this work is to suggest that the temporal variability of shortening in the Central Andes is primarily controlled by the subduction dynamics of the Nazca plate while it penetrates into the mantle transition zone. These dynamics depends on the westward velocity of the South American plate that provides the main crustal shortening force to the Andes and forces the trench to retreat. When the subducting plate reaches the lower mantle, it buckles on it-self until the forced trench retreat causes the slab to steepen in the upper mantle in contrast with the classical slab-anchoring model. The steepening of the slab hinders the trench causing it to resist the advancing South American plate, resulting in the pulsatile shortening. This buckling and steepening subduction regime could have been initiated because of the overall decrease in the westwards velocity of the South American plate. In addition, the passage of the flat-slab is required to promote the shortening of the continental plate because flat subduction scrapes the mantle lithosphere, thus weakening the continental plate. This process contributes to the efficient shortening when the trench is hindered, followed by mantle lithosphere delamination at ~20 Ma. Finally, the underthrusting of the Brazilian cratonic shield beneath the orogen occurs at ~11 Ma due to the mechanical weakening of the thick sediments covered the shield margin, and due to the decreasing resistance of the weakened lithosphere of the orogen. The second main finding of this work is to suggest that the cold flat-slab strengthens the overriding continental lithosphere and prevents strain localization. Therefore, the deformation is transmitted to the eastern front of the flat-slab segment by the shear stress operating at the subduction interface, thus the flat-slab acts like an indenter that “bulldozes” the mantle-keel of the continental lithosphere. The offset in the propagation of deformation to the east between the flat and steeper slab segments in the south causes the formation of a transpressive dextral shear zone. Here, inherited faults of past tectonic events are reactivated and further localize the deformation in an en-echelon strike-slip shear zone, through a mechanism that I refer to as “flat-slab conveyor”. Specifically, the shallowing of the flat-slab causes the lateral deformation, which explains the timing of multiple geological events preceding the arrival of the flat-slab at 33°S. These include the onset of the compression and of the transition between thin to thick-skinned deformation styles resulting from the crustal contraction of the crust in the Sierras Pampeanas some 10 and 6 Myr before the Juan Fernandez Ridge collision at that latitude, respectively. N2 - Die Andenkordillere ist ein Gebirgszug am westlichen Rand Südamerikas und Teil des östlichen zirkumpazifischen Gebirgsgürtels. Der ~7000 km lange Gebirgszug ist einer der längsten der Erde und beherbergt mit dem Altiplano-Puna-Plateau das zweitgrößte orogenetische Plateau der Welt. Die Anden sind als nicht-kollisionsbedingtes Subduktionsgebirge bekannt, das durch die Wechselwirkung zwischen der subduzierten ozeanischen Nazca-Platte und der südamerikanischen Kontinentalplatte entstanden ist. Entlang des Höhenzugs der Anden lassen sich Segmente unterschiedlicher morphotektonischer Provinzen ausmachen, die durch Variationen in topographischer Höhe, vulkanischer Aktivität, Deformationsform, Krustendicke, Krustenverkürzung und ozeanischer Plattengeometrie gekennzeichnet sind. Der größte Teil der heutigen Hebung lässt sich durch die Krustenverkürzung der letzten 50 Mio. Jahre erklären, wobei das Ausmaß der Verkürzung von ca. 300 km im zentralen Segment (15°S-30°S) auf weniger als die Hälfte im südlichen Teil (30°S-40°S) abnimmt. Es wurden mehrere Faktoren vorgeschlagen, die das Ausmaß und die Beschleunigung der Verkürzung der zentralen Anden in den letzten 15 Mio. Jahren beeinflusst haben könnten. Ein wichtiger Faktor ist wahrscheinlich die Plattengeometrie. Durch die Subduktion des Juan-Fernandez-Rückens und dessen hohe Auftriebskraft fällt die Platte bei 27-33°S in ~100 km Tiefe horizontal ein und bildet den pampeanischen flat-slab. Es wird angenommen, dass die horizontale Subduktion den thermomechanischen Zustand des Sierras-Pampeanas-Vorlandes beeinflusst, indem sie beispielsweise die Lithosphäre stärkt und die dickschalige Verlagerung der Deformation nach Osten sowie die Hebung der kristallinen Basis der Sierras-Pampeanas fördert. Vor etwa 30 Mio. Jahren verschob sich der flat-slab von der geographischen Breite des Altiplano zu seiner heutigen Position nach Süden. Die mit der Positionsverlagerung verbundenen Prozesse und Folgen für die gleichzeitige Beschleunigung der Verkürzungsraten in den zentralen Anden sind noch immer unklar. Obwohl die Passage des flat-slab eine Erklärung für dafür sein könnte, erklärt ihr Zeitpunkt nicht die beiden aus der Geologie abgeleiteten Verkürzungsimpulse vor etwa 15 und 4 Mio. Jahren. Ich stelle die Hypothese auf, dass die Deformation in den zentralen Anden durch eine komplexe Wechselwirkung zwischen der Subduktionsdynamik der Nazca-Platte und der dynamischen Materialschwächung der südamerikanischen Platte aufgrund einer Reihe von Prozessen in der oberen Platte gesteuert wird. Um diese Hypothese zu prüfen, ist eine detaillierte Untersuchung der Rolle des flat-slab, sowie der strukturellen Vererbung der Kontinentalplatte und der Subduktionsdynamik in den Anden erforderlich. Daher habe ich zwei Klassen von numerischen thermomechanischen Modellen erstellt: (i) Die erste Klasse von Modellen umfasst eine Reihe von generischen E-W-orientierten 2D-Subduktionsmodellen mit hoher Auflösung. Diese beinhalten subhorizontalen Subduktion um die Rolle der Subduktionsdynamik auf die zeitliche Variabilität der Verkürzungsrate in den zentralen Anden auf dem Altiplano (~21°S) zu untersuchen. Die modellierte Verkürzungsrate wurde mit der beobachteten tektonischen Verkürzungsrate in den zentralen Anden validiert. (ii) Die zweite Klasse von Modellen besteht aus einer Reihe von datengesteuerten 3D-Modellen der heutigen pampeanischen flat-slab-Konfiguration und der Sierras Pampeanas (26-42°S). Diese Modelle zielen darauf ab, den relativen Beitrag der heutigen subhorizontalen Subduktion und der ererbten Strukturen in der kontinentalen Lithosphäre zur Dehnungslokalisierung zu untersuchen. Beide Modellklassen wurden mit Hilfe des fortschrittlichen geodynamischen Finite-Elemente-Codes ASPECT erstellt. Das erste Hauptergebnis dieser Arbeit ist die Vermutung, dass zeitliche Änderungen der Verkürzung in den Zentralanden in erster Linie durch die Subduktionsdynamik der Nazca-Platte gesteuert werden, während diese in die Mantelübergangszone eindringt. Die Dynamik hängt von der westwärts gerichteten Geschwindigkeit der südamerikanischen Platte ab, die die Hauptantriebskraft für die Krustenverkürzung in den Anden darstellt und den Subduktionsgraben zum Zurückziehen zwingt. Wenn die subduzierende Platte den unteren Erdmantel erreicht, wölbt sie sich auf, bis der erzwungene Rückzug des Grabens dazu führt, dass auch die Platte im oberen Erdmantel steiler wird. Die aufgesteilte Platte behindert wiederum den Graben, der sich der vorrückenden südamerikanischen Platte widersetzt, was eine pulsierende Verkürzung zur Folge hat. Dieses Subduktionsregime, bestehend aus Aufwölbung und Aufsteilung, könnte durch die allgemeine westwärts gerichtete Geschwindigkeitsabnahme der südamerikanischen Platte ausgelöst worden sein. Der Durchgang des flat-slab ist zudem eine notwendige Bedingung, um die Verkürzung der Kontinentalplatte voran zu treiben, da subhorizontale Subduktion Teile der Mantellithosphäre abträgt und so die Kontinentalplatte schwächt. Dieser Prozess trägt somit zur effizienten Verkürzung bei während der Graben behindert wird und ist gefolgt von der Ablösung der Mantellithosphäre vor etwa 20 Mio. Jahren. Das Subduzieren des brasilianischen kratonischen Schildes unter das Orogen erfolgte schließlich vor etwa 11 Mio. Jahren aufgrund der mechanischen Schwächung der dicken Sedimentschicht, die den Schildrand bedeckte, sowie wegen des abnehmenden Widerstands der geschwächten Gebirgslithosphäre. Das zweite Hauptergebnis dieser Arbeit ist die Vermutung, dass der kalte flat-slab die darüber liegende kontinentale Lithosphäre stärkt und damit verhindert, dass sich Verformungen lokalisieren können. Daher wird die Deformation durch die an der Subduktionsfläche wirkende Scherspannung auf die östliche Front des flat-slab-Segments übertragen. Der flat-slab wirkt wie ein Eindringling, der die unter mantle-keel bekannte Anhäufung von abgelöstem Mantelmaterial beiseite schiebt. Der Versatz in der ostwärts gerichteten Deformationsausbreitung der flachen und der steileren Plattensegmenten im Süden führt zur Bildung einer transpressiven dextralen Scherungszone. Hier werden ererbte Verwerfungen vergangener tektonischer Ereignisse reaktiviert und helfen bei der Lokalisierung neuer Deformation in einer en-echelon-artigen Scherungszone. Dies geschieht durch einen Mechanismus, den ich als "flat-slab-Conveyor" bezeichne. Das laterale Zusammenschieben wird besonders durch das Flacherwerden des flat-slab beeinflusst, welches den Zeitpunkt mehrerer geologischer Ereignisse erklärt, die der Ankunft des flat-slab bei 33°S vorangehen. Dazu gehören der Beginn der Kompression und der Übergang von dünn- zu dickschaliger Deformation, die sich aus der Krustenkontraktion in den Sierras Pampeanas etwa 10 bzw. 6 Mio. Jahre vor der Kollision mit dem Juan-Fernandez-Rücken auf diesem Breitengrad ergaben. KW - Andes KW - Orogen KW - tectonics KW - Subduction KW - Deformation KW - Shortening KW - Flat subduction KW - Geodynamics KW - Altiplano KW - Puna KW - Sierras Pampeanas KW - Foreland KW - Altiplano KW - Anden KW - Deformation KW - Flache Subduktion KW - Vorland KW - Geodynamik KW - Orogen KW - Puna KW - Verkürzung KW - Sierras Pampeanas KW - Subduktion KW - Tektonik Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-600892 ER - TY - THES A1 - Metzger, Sabrina T1 - Neotectonic deformation over space and time as observed by space-based geodesy T1 - Über die Vermessung neotektonischer Deformation in Raum und mit Hilfe von satellitengestützter Geodäsie N2 - Alfred Wegeners ideas on continental drift were doubted for several decades until the discovery of polarization changes at the Atlantic seafloor and the seismic catalogs imaging oceanic subduction underneath the continental crust (Wadati-Benioff Zone). It took another 20 years until plate motion could be directly observed and quantified by using space geodesy. Since then, it is unthinkable to do neotectonic research without the use of satellite-based methods. Thanks to a tremendeous increase of instrumental observations in space and time over the last decades we significantly increased our knowledge on the complexity of the seismic cycle, that is, the interplay of tectonic stress build up and release. Our classical assumption, earthquakes were the only significant phenomena of strain release previously accumulated in a linear fashion, is outdated. We now know that this concept is actually decorated with a wide range of slow and fast processes such as triggered slip, afterslip, post-seismic and visco-elastic relaxation of the lower crust, dynamic pore-pressure changes in the elastic crust, aseismic creep, slow slip events and seismic swarms. On the basis of eleven peer-reviewed papers studies I here present the diversity of crustal deformation processes. Based on time-series analyses of radar imagery and satellited-based positioning data I quantify tectonic surface deformation and use numerical and analytical models and independent geologic and seismologic data to better understand the underlying crustal processes. The main part of my work focuses on the deformation observed in the Pamir, the Hindu Kush and the Tian Shan that together build the highly active continental collision zone between Northwest-India and Eurasia. Centered around the Sarez earthquake that ruptured the center of the Pamir in 2015 I present diverse examples of crustal deformation phenomena. Driver of the deformation is the Indian indenter, bulldozing into the Pamir, compressing the orogen that then collapses westward into the Tajik depression. A second natural observatory of mine to study tectonic deformation is the oceanic subduction zone in Chile that repeatedly hosts large earthquakes of magnitude 8 and more. These are best to study post-seismic relaxation processes and coupling of large earthquake. My findings nicely illustrate how complex fashion and how much the different deformation phenomena are coupled in space and time. My publications contribute to the awareness that the classical concept of the seismic cycle needs to be revised, which, in turn, has a large influence in the classical, probabilistic seismic hazard assessment that primarily relies on statistically solid recurrence times. N2 - Alfred Wegeners Thesen des Kontinentaldrifts fanden erst in den 1960er und 1970er Jahren Akzeptanz, als die krustalen Polarisationswechsel auf dem atlantischen Meeresboden entdeckt wurden und Erdbebenkataloge das Abtauchen von ozeanischer Kruste unter kontinentale Kruste abbildeten (Wadati-Benioff-Zone). Es dauerte jedoch weitere 20 Jahre, bis die Geodäsie erstmals Plattenbewegung sicht- und quantifizierbar machte. Seit dann sind satellitengestützte Messmethoden aus der neotektonischen Forschung nicht mehr wegzudenken. Dank einer stetig (zeitlich und räumlich) wachsenden Anzahl instrumenteller Beobachtungsdaten wird unser Verständnis des Erdbebenzyklus—des Wechselspiels zwischen tektonischem Spannungsauf- und -abbau—immer komplexer. Das klassische Konzept, nur Erdbeben setzten die zuvor linear aufgebaute Spannungsenergie instantan frei, wird heutzutage durch eine Vielzahl von zusätzlichen schnelleren und langsameren Prozessen ergänzt. Beispiele dafür sind getriggerte Versätze (triggered slip), Nachbeben (afterslip), postseismische und visko-elastische Relaxation der tieferen Kruste, dynamische, elastische Veränderungen des Gesteins-Porendrucks, aseismisches Kriechen sowie Spannungsabbau durch kleine Erdbebenschwärme. Anhand von elf begutachteten und bereits veröffentlichten Arbeiten präsentiere ich in meiner Habilitationsschrift die Diversität krustaler Deformationsprozesse. Ich analysiere Zeitreihen von Radar-Satellitenaufnahmen und satellitengestützten Positionierungssystemen um die tektonische Oberflächenbewegung zu quantifizieren. Der Vergleich von kinematischen Beobachtungen mit geologischen und seismischen Indizien sowie die Simulation ebenjener durch rechnergestützte Modelle ermöglichen mir, die verursachenden krustalen Prozesse besser verstehen. Der Hauptteil meiner Arbeiten beschreibt rezente, krustale Bewegungen im Pamir, Hindu Kush und Tien Shan, welche zusammen das westliche Ende der kontinentalen Kollisionszone zwischen dem indischen und eurasischen Kontinent bilden. Rund um ein starkes Erdbeben, welches 2015 den Zentralpamir erschüttert hat, zeige ich vielseitige Beispiele von hochaktiver krustaler Deformation. Verursacht werden diese Bewegungen durch den nordwestindischen Kontinentalsporn, welcher (fast) ungebremst in den Pamir hineinrammt, ihn auftürmt, zusammenquetscht, und ihn gravitationsbedingt gegen Westen ins tadschikische Becken kollabieren lässt. Der zweite thematische Schwerpunkt liegt auf Prozessen, welche durch Megathrust-Erdbeben, also Beben mit einer Magnitude>8, hervorgerufen werden. Diese Anwendungen fokussieren sich auf die ozeanischen Subduktionszone von Chile und zeigen die Wichtigkeit vertikaler Hebungsdaten um, beispielsweise, den Einfluss tektonischer Prozesse auf den Gesteins-Porendruck zu verstehen. Zusammenfassend veranschaulichen und bestätigen meine Arbeiten, wie stark und komplex die oben beschriebenen Prozesse räumlich und zeitlich korrelieren, und dass das klassische Konzept des Erdbebenzyklus überholt ist. Letztere Einsicht hat grossen Einfluss auf probabilistische seismische Gefährdungsanalysen, welche grundsätzlich statistische Vorhersagbarkeit annehmen. KW - radar satellite interferometry KW - tectonics KW - geodesy KW - seismology KW - earthquakes KW - InSAR KW - InSAR KW - Erdbeben KW - Geodäsie KW - Radar-Satelliteninterferometrie KW - Seismologie KW - Tektonik Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-599225 ER - TY - JOUR A1 - Morishita, Yu A1 - Lazecky, Milan A1 - Wright, Tim J. A1 - Weiss, Jonathan R. A1 - Elliott, John R. A1 - Hooper, Andy T1 - LiCSBAS BT - an open-source InSAR time series analysis package integrated with the LiCSAR automated Sentinel-1 InSAR processor JF - Remote sensing N2 - For the past five years, the 2-satellite Sentinel-1 constellation has provided abundant and useful Synthetic Aperture Radar (SAR) data, which have the potential to reveal global ground surface deformation at high spatial and temporal resolutions. However, for most users, fully exploiting the large amount of associated data is challenging, especially over wide areas. To help address this challenge, we have developed LiCSBAS, an open-source SAR interferometry (InSAR) time series analysis package that integrates with the automated Sentinel-1 InSAR processor (LiCSAR). LiCSBAS utilizes freely available LiCSAR products, and users can save processing time and disk space while obtaining the results of InSAR time series analysis. In the LiCSBAS processing scheme, interferograms with many unwrapping errors are automatically identified by loop closure and removed. Reliable time series and velocities are derived with the aid of masking using several noise indices. The easy implementation of atmospheric corrections to reduce noise is achieved with the Generic Atmospheric Correction Online Service for InSAR (GACOS). Using case studies in southern Tohoku and the Echigo Plain, Japan, we demonstrate that LiCSBAS applied to LiCSAR products can detect both large-scale (>100 km) and localized (similar to km) relative displacements with an accuracy of <1 cm/epoch and similar to 2 mm/yr. We detect displacements with different temporal characteristics, including linear, periodic, and episodic, in Niigata, Ojiya, and Sanjo City, respectively. LiCSBAS and LiCSAR products facilitate greater exploitation of globally available and abundant SAR datasets and enhance their applications for scientific research and societal benefit. KW - InSAR KW - Sentinel-1 KW - time series analysis KW - deformation monitoring KW - tectonics KW - subsidence KW - automatic processing KW - global Y1 - 2020 U6 - https://doi.org/10.3390/rs12030424 SN - 2072-4292 VL - 12 IS - 3 PB - MDPI CY - Basel ER - TY - THES A1 - Riedl, Simon T1 - Active tectonics in the Kenya Rift T1 - Aktive Tektonik im Keniarift BT - implications for continental rifting and paleodrainage systems BT - Erkenntnisse über kontinentale Riftzonen und Paläogewässersysteme N2 - Magmatische und tektonisch aktive Grabenzonen (Rifts) stellen die Vorstufen entstehender Plattengrenzen dar. Diese sich spreizenden tektonischen Provinzen zeichnen sich durch allgegenwärtige Abschiebungen aus, und die räumliche Verteilung, die Geometrie, und das Alter dieser Abschiebungen lässt Rückschlüsse auf die räumlichen und zeitlichen Zusammenhänge zwischen tektonischer Deformation, Magmatismus und langwelliger Krustendeformation in Rifts zu. Diese Arbeit konzentriert sich auf die Störungsaktivität im Kenia-Rift des känozoischen Ostafrikanischen Grabensystems im Zeitraum zwischen dem mittleren Pleistozän und dem Holozän. Um die frühen Stadien der Entstehung kontinentaler Plattengrenzen zu untersuchen, wird in dieser Arbeit eine zeitlich gemittelte minimale Extensionsrate für den inneren Graben des Nördlichen Kenia-Rifts (NKR) für die letzten 0,5 Mio Jahre abgeleitet. Die Analyse beruht auf Messungen mit Hilfe des digitalen TanDEM-X-Höhenmodells, um die Abschiebungen entlang der vulkanisch-tektonischen Achse des inneren Grabens des NKR zu kartieren und deren Versatzbeträge zu bestimmen. Mithilfe von vorhandenen Geochronologiedaten der deformierten vulkanischen Einheiten sowie in dieser Arbeit erstellten ⁴⁰Ar/³⁹Ar-Datierungen werden zeitlich gemittelte Extensionsraten berechnet. Die Auswertungen zeigen, dass im inneren Graben des NKR die langfristige Extensionsrate für mittelpleistozäne bis rezente Störungen Mindestwerte von 1,0 bis 1,6 mm yr⁻¹ aufweist und lokal allerdings auch Werte bis zu 2,0 mm yr⁻¹ existieren. In Anbetracht der nahezu inaktiven Randstörungen des NKR zeigt sich somit, dass sich die Extension auf die Region der aktiven vulkanisch-tektonischen Achse im inneren Graben konzentriert und somit ein fortgeschrittenes Stadium kontinentaler Extensionsprozesse im NKR vorliegt. In dieser Arbeit wird diese räumlich fokussierte Extension zudem im Rahmen einer Störungsanalyse der jüngsten vulkanischen Erscheinungen des Kenia-Rifts betrachtet. Die Arbeit analysiert mithilfe von Geländekartierungen und eines auf Luftbildern basierenden Geländemodells die Störungscharakteristika der etwa 36 tausend Jahre alten Menengai-Kaldera und der umliegenden Gebiete im zentralen Kenia-Rift. Im Allgemeinen sind die holozänen Störungen innerhalb des Rifts reine, NNO-streichende Abschiebungen, die somit das gegenwärtige tektonische Spannungsfeld wiederspiegeln; innerhalb der Menengai-Kaldera sind die jungen Strukturen jedoch von andauernder magmatischer Aktivität und von Aufdomung überprägt. Die Kaldera befindet sich im Zentrum eines sich aktiv dehnenden Riftsegments und zusammen mit den anderen quartären Vulkanen des Kenia-Rifts lassen sich diese Bereiche als Kernpunkte der extensionalen Störungsaktivität verstehen, die letztlich zu einer weiter entwickelten Phase magmengestützter Kontinentalseparation führen werden. Die bereits seit dem Tertiär andauernde Störungsaktivität im Kenia-Rift führt zur Zergliederung der größeren Rift-Senken in kleinere Segmente und beeinflusst die Sedimentologie und die Hydrologie dieser Riftbecken. Gegenwärtig sind die meisten, durch Störungen begrenzten Becken des Kenia-Rifts hydrologisch isoliert, sie waren aber während feuchter Klimaphasen hydrologisch miteinander verbunden; in dieser Arbeit untersuche ich deshalb auch diese hydrologische Verbindung der Rift-Becken für die Zeit der Afrikanischen Feuchteperiode des frühen Holozäns. Mithilfe der Analyse von digitalen Geländemodellen, unter Berücksichtigung von geomorphologischen Anzeigern für Seespiegelhochstände, Radiokarbondatierungen und einer Übersicht über Fossiliendaten konnten zwei kaskadierende Flusssysteme aus diesen Daten abgeleitet werden: eine Flusskaskade in Richtung Süden und eine in Richtung Norden. Beide Kaskaden haben die derzeit isolierten Becken während des frühen Holozäns durch überlaufende Seen und eingeschnittene Schluchten miteinander verbunden. Diese hydrologische Verbindung führte zu der Ausbreitung aquatischer Fauna entlang des Rifts, und gleichzeitig stellte die Wasserscheide zwischen den beiden Flusssystemen den einzigen terrestrischen Ausbreitungskorridor dar, der eine Überquerung des Kenia-Rifts ermöglichte. Diese tektonisch-geomorphologische Rekonstruktion erklärt die heute isolierten Vorkommen nilotischer Fischarten in den Riftseen Kenias sowie die isolierten Vorkommen Guineo-Congolischer Säugetiere in Wäldern östlich des Kenia-Rifts, die sich über die Wasserscheide im Kenia-Rift ausbreiten konnten. Auf längeren Zeitskalen sind solche Phasen hydrologischer Verbindung und Phasen der Isolation wiederholt aufgetreten und zeigen sich in wechselnden paläoökologischen Indikatoren in Sedimentbohrkernen. Hier stelle ich einen Sedimentbohrkern aus dem Koora-Becken des Südlichen Kenia-Rifts vor, der einen Datensatz der Paläo-Umweltbedingungen der letzten 1 Million Jahre beinhaltet. Dieser Datensatz zeigt, dass etwa vor 400 tausend Jahren die zuvor relativ stabilen Umweltbedingungen zum Erliegen kamen und tektonische, hydrologische und ökologische Veränderungen dazu führten, dass die Wasserverfügbarkeit, die Grasland-Vergesellschaftungen und die Bedeckung durch Baumvegetation zunehmend stärkeren und häufigeren Schwankungen unterlagen. Diese großen Veränderungen fallen zeitlich mit Phasen zusammen, in denen das südliche Becken des Kenia-Rifts von vulkanischer und tektonischer Aktivität besonders betroffen war. Die vorliegende Arbeit zeigt deshalb deutlich, inwiefern die tektonischen und geomorphologischen Gegebenheiten im Zuge einer zeitlich langanhaltenden Extension die Hydrologie, die Paläo-Umweltbedingungen sowie die Biodiversität einer Riftzone beeinflussen können. N2 - Magmatic continental rifts often constitute the earliest stage of nascent plate boundaries. These extensional tectonic provinces are characterized by ubiquitous normal faulting and volcanic activity; the spatial pattern, the geometry, and the age of these normal faults can help to unravel the spatiotemporal relationships between extensional deformation, magmatism, and long-wavelength crustal deformation of continental rift provinces. This study focuses on the active faulting in the Kenya Rift of the Cenozoic East African Rift System (EARS) with a focus on the mid-Pleistocene to the present-day. To examine the early stages of continental break-up in the EARS, this thesis presents a time-averaged minimum extension rate for the inner graben of the Northern Kenya Rift (NKR) for the last 0.5 m.y. Using the TanDEM-X digital elevation model, fault-scarp geometries and associated throws are determined across the volcano-tectonic axis of the inner graben of the NKR. By integrating existing geochronology of faulted units with new ⁴⁰Ar/³⁹Ar radioisotopic dates, time-averaged extension rates are calculated. This study reveals that in the inner graben of the NKR, the long-term extension rate based on mid-Pleistocene to recent brittle deformation has minimum values of 1.0 to 1.6 mm yr⁻¹, locally with values up to 2.0 mm yr⁻¹. In light of virtually inactive border faults of the NKR, we show that extension is focused in the region of the active volcano-tectonic axis in the inner graben, thus highlighting the maturing of continental rifting in the NKR. The phenomenon of focused extension is further investigated with a structural analysis of the youngest volcanic manifestations of the Kenya Rift, their relationship with extensional structures, and their overprint by Holocene faulting. In this context I analyzed the fault characteristics at the ~36 ka old Menengai Caldera and adjacent areas in the Central Kenya Rift using detailed field mapping and a structure-from-motion-based DEM generated from UAV data. In general, the Holocene intra-rift normal faults are dip-slip faults which strike NNE and thus reflect the present-day tectonic stress field; however, inside Menengai caldera persistent magmatic activity and magmatic resurgence overprints these young structures significantly. The caldera is located at the center of an actively extending rift segment and this and the other volcanic edifices of the Kenya Rift may constitute nucleation points of faulting an magmatic extensional processes that ultimately lead into a future stage of magma-assisted rifting. When viewed at the scale of the entire Kenya Rift the protracted normal faulting in this region compartmentalizes the larger rift depressions, and influences the sedimentology and the hydrology of the intra-rift basins at a scale of less than 100 km. In the present day, most of the fault-bounded sub-basins of the Kenya Rift are hydrologically isolated due to this combination of faulting and magmatic activity that has generated efficient hydrological barriers that maintain these basins as semi-independent geomorphic entities. This isolation, however, was overcome during wetter climatic conditions during the past when the basins were transiently connected. I therefore also investigated the hydrological connectivity of the rift basins during the African Humid Period of the early Holocene, when climate was wetter. With the help of DEM analysis, lake-highstand indicators, radiocarbon dating, and a review of the fossil record, two lake-river-cascades could be identified: one directed southward, and one directed northward. Both cascades connected presently isolated rift basins during the early Holocene via spillovers of lakes and incised river gorges. This hydrological connection fostered the dispersal of aquatic faunas along the rift, and in addition, the water divide between the two river systems represented the only terrestrial dispersal corridor across the Kenya Rift. The reconstruction explains isolated distributions of Nilotic fish species in Kenya Rift lakes and of Guineo-Congolian mammal species in forests east of the Kenya Rift. On longer timescales, repeated episodes of connectivity and isolation must have occurred. To address this problem I participated in research to analyze a sediment drill core from the Koora basin of the Southern Kenya Rift, which provides a paleo-environmental record of the last 1 Ma. Based on this record it can be concluded that at ~400 ka relatively stable environmental conditions were disrupted by tectonic, hydrological, and ecological changes, resulting in increasingly large and frequent fluctuations in water availability, grassland communities, and woody plant cover. The major environmental shifts reflected in the drill core data coincide with phases where volcano-tectonic activity affected the basin. This thesis therefore shows how protracted extensional tectonic processes and the resulting geomorphologic conditions can affect the hydrology, the paleo-environment and the biodiversity of extensional zones in Kenya and elsewhere. KW - Tektonik KW - tectonics KW - Ostafrikanisches Rift KW - East African Rift KW - Biodiversität KW - biodiversity KW - Paläoökologie KW - paleoecology KW - Kenia KW - Kenya Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-538552 ER - TY - JOUR A1 - von Specht, Sebastian A1 - Heidbach, Oliver A1 - Cotton, Fabrice Pierre A1 - Zang, Arno T1 - Uncertainty reduction of stress tensor inversion with data-driven catalogue selection JF - Geophysical journal international N2 - The selection of earthquake focal mechanisms (FMs) for stress tensor inversion (STI) is commonly done on a spatial basis, that is, hypocentres. However, this selection approach may include data that are undesired, for example, by mixing events that are caused by different stress tensors when for the STI a single stress tensor is assumed. Due to the significant increase of FM data in the past decades, objective data-driven data selection is feasible, allowing more refined FM catalogues that avoid these issues and provide data weights for the STI routines. We present the application of angular classification with expectation-maximization (ACE) as a tool for data selection. ACE identifies clusters of FM without a priori information. The identified clusters can be used for the classification of the style-of-faulting and as weights of the FM data. We demonstrate that ACE effectively selects data that can be associated with a single stress tensor. Two application examples are given for weighted STI from South America. We use the resulting clusters and weights as a priori information for an STI for these regions and show that uncertainties of the stress tensor estimates are reduced significantly. KW - Inverse Theory KW - Statistical Methods KW - Seismicity KW - tectonics KW - Kinematics of crustal KW - mantle deformation Y1 - 2018 U6 - https://doi.org/10.1093/gji/ggy240 SN - 0956-540X SN - 1365-246X VL - 214 IS - 3 SP - 2250 EP - 2263 PB - Oxford Univ. Press CY - Oxford ER - TY - THES A1 - Barrionuevo, Matías T1 - The role of the upper plate in the Andean tectonic evolution (33-36°S): insights from structural geology and numerical modeling T1 - El rol de la placa superior en la evolución tectónica andina (33-36°S): aportes desde la geología estructural y el modelado numérico T1 - Die Rolle der oberen Platte in der tektonischen Entwicklung der Anden (33-36°S): Erkenntnisse aus der Strukturgeologie und der numerischen Modellierung N2 - Los Andes Centrales del Sur (33-36°S) son un gran laboratorio para el estudio de los procesos de deformación orogénica, donde las condiciones de borde, como la geometría de la placa subductada, imponen un importante control sobre la deformación andina. Por otro lado, la Placa Sudamericana presenta una serie de heterogeneidades que también imparten un control sobre el modo de deformación. El objetivo de esta tesis es probar el control de este último factor sobre la construcción del sistema orogénico andino. A partir de la integración de la información superficial y de subsuelo en el área sur (34°-36°S), se estudió la evolución de la deformación andina sobre el segmento de subducción normal. Se desarrolló un modelo estructural que evalúa el estado de esfuerzos desde el Mioceno hasta la actualidad, el rol de estructuras previas y su influencia en la migración de fluidos. Con estos datos y publicaciones previas de la zona norte del área de estudio (33°-34ºS), se realizó un modelado numérico geodinámico para probar la hipótesis del papel de las heterogeneidades de la placa superior en la evolución andina. Se utilizaron dos códigos (LAPEX-2D y ASPECT) basados en elementos finitos/diferencias finitas, que simulan el comportamiento de materiales con reologías elastoviscoplásticas bajo deformación. Los resultados del modelado sugieren que la deformación contraccional de la placa superior está significativamente controlada por la resistencia de la litósfera, que está definida por la composición de la corteza superior e inferior y por la proporción del manto litosférico, que a su vez está definida por eventos tectónicos previos. Estos eventos previos también definieron la composición de la corteza y su geometría, que es otro factor que controla la localización de la deformación. Con una composición de corteza inferior más félsica, la deformación sigue un modo de cizalla pura mientras que las composiciones más máficas provocan un modo de deformación tipo cizalla simple. Por otro lado, observamos que el espesor inicial de la litósfera controla la localización de la deformación, donde zonas con litósfera más fina es propensa a concentrar la deformación. Un límite litósfera-astenósfera asimétrico, como resultado del flujo de la cuña mantélica tiende a generar despegues vergentes al E. N2 - The Southern Central Andes (33°-36°S) are an excellent natural laboratory to study orogenic deformation processes, where boundary conditions, such as the geometry of the subducted plate, impose an important control on the evolution of the orogen. On the other hand, the South American plate presents a series of heterogeneities that additionally impart control on the mode of deformation. This thesis aims to test the control of this last factor over the construction of the Cenozoic Andean orogenic system. From the integration of surface and subsurface information in the southern area (34-36°S), the evolution of Andean deformation over the steeply dipping subduction segment was studied. A structural model was developed evaluating the stress state from the Miocene to the present-day and its influence in the migration of magmatic fluids and hydrocarbons. Based on these data, together with the data generated by other researchers in the northern zone of the study area (33-34°S), geodynamic numerical modeling was performed to test the hypothesis of the decisive role of upper-plate heterogeneities in the Andean evolution. Geodynamic codes (LAPEX-2D and ASPECT) which simulate the behavior of materials with elasto-visco-plastic rheologies under deformation, were used. The model results suggest that upper-plate contractional deformation is significantly controlled by the strength of the lithosphere, which is defined by the composition of the upper and lower crust, and by the proportion of lithospheric mantle, which in turn is determined by previous tectonic events. In addition, the previous regional tectono-magmatic events also defined the composition of the crust and its geometry, which is another factor that controls the localization of deformation. Accordingly, with more felsic lower crustal composition, the deformation follows a pure-shear mode, while more mafic compositions induce a simple-shear deformation mode. On the other hand, it was observed that initial lithospheric thickness may fundamentally control the location of deformation, with zones characterized by thin lithosphere are prone to concentrate it. Finally, it was found that an asymmetric lithosphere-astenosphere boundary resulting from corner flow in the mantle wedge of the eastward-directed subduction zone tends to generate east-vergent detachments. N2 - Die südlichen Zentralanden (33°-36°S) sind eine ausgezeichnete, natürliche Forschungsumgebung zur Untersuchung gebirgsbildender Deformationsprozesse, in der Randbedingungen, wie die Geometrie der subduzierten Platte, einen starken Einfluss auf die Evolution des Gebirges besitzen. Anderseits sind die Deformationsmechanismen geprägt von der Heterogenität der Südamerikanischen Platte. In dieser Arbeit wird die Bedeutung dieses Mechanismus für die Herausbildung der Anden während des Känozoikums untersucht. Im südlichen Teil (34-36°S), in dem die subduzierte Platte in einem steileren Winkel in den Erdmantel absinkt, wird die Entwicklung der Andendeformation mithilfe von oberflächlich aufgezeichneten und in tiefere Erdschichten reichenden Daten untersucht. Das darauf aufbauende Strukturmodell ermöglicht die Abschätzung der tektonischen Spannungen vom Miozän bis in die Neuzeit und den Einfluss der Bewegungen von magmatischen Fluiden, sowie Kohlenwasserstoffen. Auf Grundlage dieser Daten und solcher, die von Wissenschaftlern im nördlichen Bereich des Untersuchungsgebietes (33-34°S) erfasst wurden, wurde eine geodynamische, numerische Modellierung durchgeführt, um die Hypothese des Einflusses der Heterogenität der oberen Platten auf die Gebirgsbildung der Anden zu überprüfen. Die genutzte geodynamische Softwares (LAPEX-2D und ASPECT) simulieren das Verhalten von elasto-viskoplastischen Materialien, wenn diese unter Spannung stehen. Die Modellierungsergebnisse zeigen, dass die Kontraktionsprozesse hauptsächlich durch die Stärke der Lithosphäre beeinflusst werden. Diese Kenngröße wird aus der Zusammensetzung von Ober- und Unterkruste und dem Anteil des lithosphärischen Mantels, der durch vorhergehende tektonische Vorgänge überprägt ist, bestimmt. Diese räumlich begrenzten tektono-magmatischen Events definieren ebenfalls die Zusammensetzung und die Geometrie der Erdkruste, welche einen großen Einfluss auf das räumliche Auftreten von Deformationsprozessen hat. Eine eher felsische Unterkruste führt vorrangig zu pure-shear, während eine eher mafisch zusammengesetzte Unterkruste primär zu einem Deformationsmechanismus führt, der simple-shear genannt wird. Weiterhing wurde beobachtet, dass die Dicke der Lithosphäre vor der Deformation einen fundamentalen Einfluss auf die räumliche Eingrenzung von Deformation hat, wobei Regionen mit einer dünnen Lithosphärenschicht verstärkt Deformation aufweisen. Eine asymmetrische Grenzschicht zwischen Lithosphäre und Asthenosphäre ist das Resultat von Fließprozessen im Erdmantel, im Keil zwischen der obenliegenden Platte und der sich ostwärts absinkenden Subduktionszone, und verstärkt die Herausbildung von nach Osten gerichteten Abscherungen in der Erdkruste. KW - structural geology KW - tectonics KW - subduction KW - geodynamic modeling KW - geodynamische Modellierung KW - Strukturgeologie KW - Subduktion KW - Tektonik Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-515909 ER - TY - GEN A1 - Morishita, Yu A1 - Lazecky, Milan A1 - Wright, Tim J. A1 - Weiss, Jonathan R. A1 - Elliott, John R. A1 - Hooper, Andy T1 - LiCSBAS BT - An Open-Source InSAR Time Series Analysis Package Integrated with the LiCSAR Automated Sentinel-1 InSAR Processor T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - For the past five years, the 2-satellite Sentinel-1 constellation has provided abundant and useful Synthetic Aperture Radar (SAR) data, which have the potential to reveal global ground surface deformation at high spatial and temporal resolutions. However, for most users, fully exploiting the large amount of associated data is challenging, especially over wide areas. To help address this challenge, we have developed LiCSBAS, an open-source SAR interferometry (InSAR) time series analysis package that integrates with the automated Sentinel-1 InSAR processor (LiCSAR). LiCSBAS utilizes freely available LiCSAR products, and users can save processing time and disk space while obtaining the results of InSAR time series analysis. In the LiCSBAS processing scheme, interferograms with many unwrapping errors are automatically identified by loop closure and removed. Reliable time series and velocities are derived with the aid of masking using several noise indices. The easy implementation of atmospheric corrections to reduce noise is achieved with the Generic Atmospheric Correction Online Service for InSAR (GACOS). Using case studies in southern Tohoku and the Echigo Plain, Japan, we demonstrate that LiCSBAS applied to LiCSAR products can detect both large-scale (>100 km) and localized (~km) relative displacements with an accuracy of <1 cm/epoch and ~2 mm/yr. We detect displacements with different temporal characteristics, including linear, periodic, and episodic, in Niigata, Ojiya, and Sanjo City, respectively. LiCSBAS and LiCSAR products facilitate greater exploitation of globally available and abundant SAR datasets and enhance their applications for scientific research and societal benefit. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1078 KW - InSAR KW - Sentinel-1 KW - time series analysis KW - deformation monitoring KW - tectonics KW - subsidence KW - automatic processing KW - global Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-472431 SN - 1866-8372 IS - 1078 ER - TY - JOUR A1 - Forte, Adam M. A1 - Whipple, Kelin X. A1 - Bookhagen, Bodo A1 - Rossi, Matthew W. T1 - Decoupling of modern shortening rates, climate, and topography in the Caucasus JF - Earth & planetary science letters N2 - The Greater and Lesser Caucasus mountains and their associated foreland basins contain similar rock types, experience a similar two-fold, along-strike variation in mean annual precipitation, and were affected by extreme base-level drops of the neighboring Caspian Sea. However, the two Caucasus ranges are characterized by decidedly different tectonic regimes and rates of deformation that are subject to moderate (less than an order of magnitude) gradients in climate, and thus allow for a unique opportunity to isolate the effects of climate and tectonics in the evolution of topography within active orogens. There is an apparent disconnect between modern climate, shortening rates, and topography of both the Greater Caucasus and Lesser Caucasus which exhibit remarkably similar topography along-strike despite the gradients in forcing. By combining multiple datasets, we examine plausible causes for this disconnect by presenting a detailed analysis of the topography of both ranges utilizing established relationships between catchment-mean erosion rates and topography (local relief, hillslope gradients, and channel steepness) and combining it with a synthesis of previously published low-temperature thermochronologic data. Modern climate of the Caucasus region is assessed through an analysis of remotely-sensed data (TRMM and MODIS) and historical streamflow data. Because along-strike variation in either erosional efficiency or thickness of accreted material fail to explain our observations, we suggest that the topography of both the western Lesser and Greater Caucasus are partially supported by different geodynamic forces. In the western Lesser Caucasus, high relief portions of the landscape likely reflect uplift related to ongoing mantle lithosphere delamination beneath the neighboring East Anatolian Plateau. In the Greater Caucasus, maintenance of high topography in the western portion of the range despite extremely low (<2-4 mm/y) modern convergence rates may be related to dynamic topography from detachment of the north-directed Greater Caucasus slab or to a recent slowing of convergence rates. Large-scale spatial gradients in climate are not reflected in the topography of the Caucasus and do not seem to exert any significant control on the tectonics or structure of either range. (C) 2016 Elsevier B.V. All rights reserved. KW - tectonics KW - erosion KW - climate KW - dynamic topography KW - orogenic processes Y1 - 2016 U6 - https://doi.org/10.1016/j.epsl.2016.06.013 SN - 0012-821X SN - 1385-013X VL - 449 SP - 282 EP - 294 PB - Elsevier CY - Amsterdam ER -