TY - JOUR A1 - Zehbe, Kerstin A1 - Kollosche, Matthias A1 - Lardong, Sebastian A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Taubert, Andreas T1 - Ionogels Based on Poly(methyl methacrylate) and Metal-Containing Ionic Liquids: Correlation between Structure and Mechanical and Electrical Properties JF - International journal of molecular sciences N2 - Ionogels (IGs) based on poly(methyl methacrylate) (PMMA) and the metal-containing ionic liquids (ILs) bis-1-butyl-3-methlimidazolium tetrachloridocuprate(II), tetrachloride cobaltate(II), and tetrachlorido manganate(II) have been synthesized and their mechanical and electrical properties have been correlated with their microstructure. Unlike many previous examples, the current IGs show a decreasing stability in stress-strain experiments on increasing IL fractions. The conductivities of the current IGs are lower than those observed in similar examples in the literature. Both effects are caused by a two-phase structure with micrometer-sized IL-rich domains homogeneously dispersed an IL-deficient continuous PMMA phase. This study demonstrates that the IL-polymer miscibility and the morphology of the IGs are key parameters to control the (macroscopic) properties of IGs. KW - microstructure KW - ionogels KW - ionic liquids KW - phase separation KW - mechanical properties KW - ionic conductivity Y1 - 2016 U6 - https://doi.org/10.3390/ijms17030391 SN - 1422-0067 VL - 17 PB - MDPI CY - Basel ER - TY - JOUR A1 - Mondal, Suvendu Sekhar A1 - Bhunia, Asamanjoy A1 - Attallah, Ahmed G. A1 - Matthes, Philipp R. A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Müller-Buschbaum, Klaus A1 - Krause-Rehberg, Reinhard A1 - Janiak, Christoph A1 - Holdt, Hans-Jürgen T1 - Study of the Discrepancies between Crystallographic Porosity and Guest Access into Cadmium-Imidazolate Frameworks and Tunable Luminescence Properties by Incorporation of Lanthanides JF - Chemistry - a European journal N2 - An extended member of the isoreticular family of metal-imidazolate framework structures, IFP-6 (IFP=imidazolate framework Potsdam), based on cadmium metal and an in situ functionalized 2-methylimidazolate-4-amide-5-imidate linker is reported. A porous 3D framework with 1D hexagonal channels with accessible pore windows of 0.52nm has been synthesized by using an ionic liquid (IL) linker precursor. IFP-6 shows significant gas uptake capacity only for CO2 and CH4 at elevated pressure, whereas it does not adsorb N-2, H-2, and CH4 under atmospheric conditions. IFP-6 is assumed to deteriorate at the outside of the material during the activation process. This closing of the metal-organic framework (MOF) pores is proven by positron annihilation lifetime spectroscopy (PALS), which revealed inherent crystal defects. PALS results support the conservation of the inner pores of IFP-6. IFP-6 has also been successfully loaded with luminescent trivalent lanthanide ions (Ln(III)=Tb, Eu, and Sm) in a bottom-up one-pot reaction through the in situ generation of the linker ligand and in situ incorporation of photoluminescent Ln ions into the constituting network. The results of photoluminescence investigations and powder XRD provide evidence that the Ln ions are not doped as connectivity centers into the frameworks, but are instead located within the pores of the MOFs. Under UV light irradiation, Tb@IFP-6 and Eu@IFP-6 ((exc)=365nm) exhibit observable emission changes to a greenish and reddish color, respectively, as a result of strong Ln 4f emissions. KW - adsorption KW - cadmium KW - ionic liquids KW - luminescence KW - metal-organic frameworks Y1 - 2016 U6 - https://doi.org/10.1002/chem.201504757 SN - 0947-6539 SN - 1521-3765 VL - 22 SP - 6905 EP - 6913 PB - Wiley-VCH CY - Weinheim ER -