TY - THES A1 - Pavlenko, Elena T1 - Hybrid nanolayer architectures for ultrafast acousto-plasmonics in soft matter T1 - Hybride Nanolayer-Architekturen für ultraschnelle Akusto-Plasmonics in weicher Materie N2 - The goal of the presented work is to explore the interaction between gold nanorods (GNRs) and hyper-sound waves. For the generation of the hyper-sound I have used Azobenzene-containing polymer transducers. Multilayer polymer structures with well-defined thicknesses and smooth interfaces were built via layer-by-layer deposition. Anionic polyelectrolytes with Azobenzene side groups (PAzo) were alternated with cationic polymer PAH, for the creation of transducer films. PSS/PAH multilayer were built for spacer layers, which do not absorb in the visible light range. The properties of the PAzo/PAH film as a transducer are carefully characterized by static and transient optical spectroscopy. The optical and mechanical properties of the transducer are studied on the picosecond time scale. In particular the relative change of the refractive index of the photo-excited and expanded PAH/PAzo is Δn/n = - 2.6*10‐4. Calibration of the generated strain is performed by ultrafast X-ray diffraction calibrated the strain in a Mica substrate, into which the hyper-sound is transduced. By simulating the X-ray data with a linear-chain-model the strain in the transducer under the excitation is derived to be Δd/d ~ 5*10‐4. Additional to the investigation of the properties of the transducer itself, I have performed a series of experiments to study the penetration of the generated strain into various adjacent materials. By depositing the PAzo/PAH film onto a PAH/PSS structure with gold nanorods incorporated in it, I have shown that nanoscale impurities can be detected via the scattering of hyper-sound. Prior to the investigation of complex structures containing GNRs and the transducer, I have performed several sets of experiments on GNRs deposited on a small buffer of PSS/PAH. The static and transient response of GNRs is investigated for different fluence of the pump beam and for different dielectric environments (GNRs covered by PSS/PAH). A systematic analysis of sample architectures is performed in order to construct a sample with the desired effect of GNRs responding to the hyper-sound strain wave. The observed shift of a feature related to the longitudinal plasmon resonance in the transient reflection spectra is interpreted as the event of GNRs sensing the strain wave. We argue that the shift of the longitudinal plasmon resonance is caused by the viscoelastic deformation of the polymer around the nanoparticle. The deformation is induced by the out of plane difference in strain in the area directly under a particle and next to it. Simulations based on the linear chain model support this assumption. Experimentally this assumption is proven by investigating the same structure, with GNRs embedded in a PSS/PAH polymer layer. The response of GNRs to the hyper-sound wave is also observed for the sample structure with GNRs embedded in PAzo/PAH films. The response of GNRs in this case is explained to be driven by the change of the refractive index of PAzo during the strain propagation. N2 - Akustische Experimente auf ultraschnellen Zeitskalen ermöglichen die Bestimmung von Tiefeninformationen in Dünnschichtproben. Der Grundgedanke dieser Methode ist die Analyse von Schallwellen, die sich in dem zu untersuchenden Material ausbreiten. Die Schallpulse werden dabei üblicherweise mittels dünner Schichten erzeugt, die dafür auf die Probe aufgebracht werden. Diese Methode ist etabliert für die Untersuchung von harten, anorganischen Materialien, aber weniger entwickelt für weiche, organische Materialien. Die wenigen existierenden Untersuchungen von weichen Materialien mittels ultraschneller Akustik nutzen bisher die Ausdehnung dünner Metallfilme, beispielsweise aus Aluminium oder Titan, für den Umwandlungsprozess von kurzen Lichtpulsen zu Schallwellen. Die deutlich höheren Dichten der Metalle gegenüber der zu untersuchenden weichen Materie führen zu einer geringen Effizienz bei der Einkopplung der Schallpulse in das Material. Weiterhin ist es schwierig, die Metallfilme auf die zu untersuchenden Materialien chemisch aufzubringen. Eine Möglichkeit diese Probleme zu umgehen, ist die Verwendung von Licht-Schallwandlern aus chemisch ähnlicher, weicher Materialien. Hier präsentiere ich die Ergebnisse meiner Untersuchungen von Polymer Filmen, welche Azobenzen als aktiven Bestandteil für die photo-akustische Umwandlung enthalten. Dabei wurden die Filme mittels statischer, sowie auch zeitaufgelöster Spektroskopie untersucht. Mit zeitaufgelösten Brillouin-Streuungs-Experimenten habe ich die Schallgeschwindigkeit in den Polymeren und dem Azobenzen-Schallwandler zu 3.4±0.3 nm/ps bestimmt. Die relative transiente Änderung des Brechungsindex in dem Azobenzenfilm aus optischen Messungen beträgt Δn/n = - 2.6*10‐4. Die Untersuchung der Schallpropagation in verschiedenen Probengeometrien erlaubt es uns, Reflektionen der Schallwellen von verschiedenen Übergängen (Polymer/Quarz, Polymer/Luft) und die Ausbreitung der mechanischen Wellen in weiche (Polymere) und harte (Quarz) angrenzende Materialien zu studieren. Durch Untersuchungen an einer Probe mit Gold-Nano-Stäbchen innerhalb einer Polymerschicht habe ich die Möglichkeit aufgezeigt, die Tiefenposition der Nanopartikel zu bestimmen. Die Ausdehnung des photomechanischen Wandlers wurde mittels zeitaufgelöster Röntgenbeugung zu ε = Δd/d ̴ 5x10-4 bestimmt. Der zweite Teil der Doktorarbeit behandelt die Wechselwirkung von Schallwellen und Gold-Nano-Stäbchen (GNS). GNS werden oft in der Chemie und Biologie als plasmonische Marker eingesetzt. In den meisten Fällen werden die Teilchen dafür mit einer Hülle überzogen, um ihre Agglomeration zu unterdrücken oder um ihnen spezielle Sensoreigenschaften zu geben. Trotz ihrer häufigen Anwendung in teilweise sehr komplexen Geometrien sind die optischen und elastischen Eigenschaften der Hülle der Nanopartikel, sowie deren Wechselwirkung mit der Umgebung wenig erforscht. Um die Wechselwirkung zwischen GNS und Schallwellen zu untersuchen habe ich eine systematische Studie an verschiedenen Probenstrukturen unternommen. Dabei finden wir, dass die viskoelastische Verformung der Polymerhülle um die GNS von der unterschiedlichen Ausdehnung der Fläche unterhalb der Partikel und neben ihnen stammt. Diese Schlussfolgerung wird von einer Simulation ihrer Ausdehnungsdynamik unterstützt. Einen weiteren Beleg liefern Experimente bei denen die Verformung von Polymeren an der Oberfläche dadurch verringert wird, dass die Gold-Nano-Stäbchen mit einer zusätzlichen dünnen Polymerschicht bedeckt werden. KW - ultrafast dynamics KW - plasmonics KW - hypersound KW - azobenzene KW - ultrafast spectroscopy KW - ultraschnelle Dynamik KW - Pump-Probe Spektroskopie KW - Plasmonics KW - Gold-Nanopartikel KW - Azobenzene Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-99544 ER - TY - THES A1 - Bojahr, Andre T1 - Hypersound interaction studied by time-resolved inelastic light and x-ray scattering T1 - Wechselwirkende Hyperschallwellen untersucht mittels zeitaufgelöster inelastischer Licht- und Röntgenstreuung N2 - This publications-based thesis summarizes my contribution to the scientific field of ultrafast structural dynamics. It consists of 16 publications, about the generation, detection and coupling of coherent gigahertz longitudinal acoustic phonons, also called hypersonic waves. To generate such high frequency phonons, femtosecond near infrared laser pulses were used to heat nanostructures composed of perovskite oxides on an ultrashort timescale. As a consequence the heated regions of such a nanostructure expand and a high frequency acoustic phonon pulse is generated. To detect such coherent acoustic sound pulses I use ultrafast variants of optical Brillouin and x-ray scattering. Here an incident optical or x-ray photon is scattered by the excited sound wave in the sample. The scattered light intensity measures the occupation of the phonon modes. The central part of this work is the investigation of coherent high amplitude phonon wave packets which can behave nonlinearly, quite similar to shallow water waves which show a steepening of wave fronts or solitons well known as tsunamis. Due to the high amplitude of the acoustic wave packets in the solid, the acoustic properties can change significantly in the vicinity of the sound pulse. This may lead to a shape change of the pulse. I have observed by time-resolved Brillouin scattering, that a single cycle hypersound pulse shows a wavefront steepening. I excited hypersound pulses with strain amplitudes until 1% which I have calibrated by ultrafast x-ray diffraction (UXRD). On the basis of this first experiment we developed the idea of the nonlinear mixing of narrowband phonon wave packets which we call "nonlinear phononics" in analogy with the nonlinear optics, which summarizes a kaleidoscope of surprising optical phenomena showing up at very high electric fields. Such phenomena are for instance Second Harmonic Generation, four-wave-mixing or solitons. But in case of excited coherent phonons the wave packets have usually very broad spectra which make it nearly impossible to look at elementary scattering processes between phonons with certain momentum and energy. For that purpose I tested different techniques to excite narrowband phonon wave packets which mainly consist of phonons with a certain momentum and frequency. To this end epitaxially grown metal films on a dielectric substrate were excited with a train of laser pulses. These excitation pulses drive the metal film to oscillate with the frequency given by their inverse temporal displacement and send a hypersonic wave of this frequency into the substrate. The monochromaticity of these wave packets was proven by ultrafast optical Brillouin and x-ray scattering. Using the excitation of such narrowband phonon wave packets I was able to observe the Second Harmonic Generation (SHG) of coherent phonons as a first example of nonlinear wave mixing of nanometric phonon wave packets. N2 - Diese publikationsbasierte Dissertation fasst meinen Beitrag zum Forschungsgebiet der ultraschnellen Strukturdynamik zusammen. Diese Arbeit besteht aus 16 Publikationen aus den Bereichen der Erzeugung, Detektion und Kopplung von kohärenten Gigahertz longitudinal-akustischen Phononen, auch Hyperschallwellen genannt. Um solch hochfrequente Phononen zu erzeugen, werden Femtosekunden nahinfrarot Laserpulse benutzt, um Nanostrukturen auf einer ultraschnellen Zeitskala zu erhitzen. Die aufgeheizten Regionen der Nanostruktur dehnen sich aufgrund der hohen Temperatur aus und ein hochfrequenter Schallpuls wird generiert. Um solche akustischen Pulse zu detektieren benutze ich ultraschnelle Varianten der Brillouin- und Röntgenstreuung. Dabei wird ein einfallendes optisches oder Röntgenphoton an der erzeugten Schallwelle gestreut. Die gemessene Streuintensität ist hierbei ein Maß für die Besetzung einzelner Phononenzustände. Der zentrale Teil dieser Arbeit ist die Untersuchung von kohärenten Phonon-Wellenpaketen mit sehr hoher Amplitude. Diese Wellenpakete können sich nichtlinear verhalten, sehr ähnlich zu Flachwasserwellen bei denen nichtlineare Effekte in Form eines Aufsteilens der Wellenfronten oder der Existenz von Solitonen, bekannt als Tsunamis, äußern. Durch die hohe Amplitude der akustischen Wellenpakete können sich die akustischen Eigenschaften des Festkörpers in der Umgebung des Schallpulses signifikant ändern, welches sich dann in einer Formänderung des Schallpulses widerspiegelt. Ich konnte mittels zeitaufgelöster Brillouinstreuung das Aufsteilen der Wellenfronten eines Hyperschallpulses bestehend aus einem einzigen Oszillationszyklus beobachten. Hierbei wurden Hyperschallwellen mit einer Dehnungsamplitude von bis zu 1% angeregt, wobei ich diesen Wert mittels ultraschneller Röntgenbeugung kalibrieren konnte. Mit diesem ersten Experiment als Basis entwickelten wir die Idee der nichtlinearen Wellenmischung von schmalbandigen Phonon-Wellenpaketen unter dem Titel "nichtlineare Phononik" in Analogie zur nichtlinearen Optik, welche sich aus einer Reihe von verblüffenden optischen Phänomenen bei sehr hohen elektrischen Feldstärken zusammensetzt. Solche Phänomene sind z. B. die optische Frequenzverdopplung, das Vier-Wellen-Mischen oder Solitone. Nur sind im Falle von kohärenten Phononen die erzeugten Spektren sehr breitbandig, was die Untersuchung von spezifischen Phononen mit festem Impuls und definierter Frequenz fast unmöglich macht. Aus diesem Grund testete ich verschiedene Methoden um schmalbandige Phonon-Wellenpakete anzuregen, welche im Wesentlichen aus Phononen bestimmten Impulses und definierter Frequenz bestehen. Dafür wurden schließ lich epitaktisch auf ein dielektrisches Substrat aufgewachsene Metallfilme mit einen Laserpulszug angeregt. Hier sorgen die Lichtpulse für eine periodische Oszillation des Metalfilms, wobei die Anregefrequenz durch den inversen zeitlichen Abstand der Lichtpulse gegeben ist. Diese periodische Oszillation sendet dann ein Hyperschallwellenpaket eben dieser Frequenz ins Substrat. Die Monochromie dieser Wellenpakete konnte dabei mittels ultraschneller Brillouin- und Röntgenstreuung bestätigt werden. Durch die Benutzung dieser schmalbandigen Phonon-Wellenpakete war es mir möglich, die Frequenzverdopplung (SHG) von kohärenten Phononen zu beobachten, was ein erstes Beispiel für die nichtlineare Wellenmischung von nanometrischen Phonon-Wellenpaketen ist. KW - hypersound KW - nonlinear acoustics KW - ultrafast KW - Brillouin scattering KW - x-ray diffraction KW - self-steepening KW - second-harmonic generation KW - Phononen KW - Wechselwirkung KW - Anharmonizität KW - nichtlineare Wellenmischung KW - zweite Harmonische KW - Phononenstreuung KW - nichlineare Phononik Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-93860 ER - TY - THES A1 - Mitzscherling, Steffen T1 - Polyelectrolyte multilayers for plasmonics and picosecond ultrasonics T1 - Multischichten aus Polyelektrolyten in der Pikosekundenakustik und Plasmonik N2 - This thesis investigates the application of polyelectrolyte multilayers in plasmonics and picosecond acoustics. The observed samples were fabricated by the spin-assisted layer-by-layer deposition technique that allowed a precise tuning of layer thickness in the range of few nanometers. The first field of interest deals with the interaction of light-induced localized surface plasmons (LSP) of rod-shaped gold nanoparticles with the particles' environment. The environment consists of an air phase and a phase of polyelectrolytes, whose ratio affects the spectral position of the LSP resonance. Measured UV-VIS spectra showed the shift of the LSP absorption peak as a function of the cover layer thickness of the particles. The data are modeled using an average dielectric function instead of the dielectric functions of air and polyelectrolytes. In addition using a measured dielectric function of the gold nanoparticles, the position of the LSP absorption peak could be simulated with good agreement to the data. The analytic model helps to understand the optical properties of metal nanoparticles in an inhomogeneous environment. The second part of this work discusses the applicability of PAzo/PAH and dye-doped PSS/PAH polyelectrolyte multilayers as transducers to generate hypersound pulses. The generated strain pulses were detected by time-domain Brillouin scattering (TDBS) using a pump-probe laser setup. Transducer layers made of polyelectrolytes were compared qualitatively to common aluminum transducers in terms of measured TDBS signal amplitude, degradation due to laser excitation, and sample preparation. The measurements proved that fast and easy prepared polyelectrolyte transducers provided stronger TDBS signals than the aluminum transducer. AFM topography measurements showed a degradation of the polyelectrolyte structures, especially for the PAzo/PAH sample. To quantify the induced strain, optical barriers were introduced to separate the transducer material from the medium of the hypersound propagation. Difficulties in the sample preparation prohibited a reliable quantification. But the experiments showed that a coating with transparent polyelectrolytes increases the efficiency of aluminum transducers and modifies the excited phonon distribution. The adoption of polyelectrolytes to the scientific field of picosecond acoustics enables a cheap and fast fabrication of transducer layers on most surfaces. In contrast to aluminum layers the polyelectrolytes are transparent over a wide spectral range. Thus, the strain modulation can be probed from surface and back. N2 - Diese Doktorarbeit behandelt die Verwendung von Multischichtsystemen aus Polyelektrolyten in den Fachgebieten der Plasmonik und der Pikosekunden-Akustik. Die verwendeten Proben wurden mit dem Spincoater-gestützten Layer-by-Layer-Verfahren hergestellt. Diese Methode ermöglichte die Einstellung Schichtdicke mit einer Präzision von wenigen Nanometern. Im Bereich der Plasmonik wurde die Wechselwirkung von Oberflächenplasmonen stabförmiger Gold-Nanopartikel mit deren Umgebung untersucht. Diese Umgebung bestand aus zwei Phasen: Polyelektrolyte und Luft. Das Volumenverhältnis der Materialien bestimmte die spektrale Position des Oberflächenplasmons. Bei zunehmender Einbettung der Goldpartikel zeigten die gemessenen UV-VIS Spektren eine Rotverschiebung der Plasmonenabsorption. Es wurde ein Modell entwickelt, das die inhomogene Umgebung der Partikel durch eine mittlere dieelekrische Funktion beschreibt. Nachdem die dielektrische Funktion der Goldpartikel in separaten Messungen bestimmt waren, konnte die Lage der Plasmonenabsorption berechnet werden. Die Berechnungen stimmten dabei mit den Messwerten überein. Mit diesem analytischen Modell ist es möglich, die optischen Eigenschaften von metallischen Nanopartikeln in einer inhomogenene Umgebung zu verstehen. Der zweite Teil dieser Arbeit diskutiert die Anwendbarkeit von polyelektrolytischen Multischichten aus PAzo/PAH bzw. Porphyrin-dotiertem PSS/PAH für die Erzeugung von Hyperschallpulsen. Die erzeugten Schallpulse wurden durch zeitaufgelöste Brillouin-Streuung in einem sogenannten pump-probe Aufbau detektiert. Schallerzeugende Schichten aus Polyelektrolyten wurden mit Wandlern aus Aluminium verglichen. Die Messungen zeigten, dass die Polyelektrolyte sehr gut für die Erzeugung von Schallpulsen geeignet sind. Der einfachen Probenpräparation und der guten Effizienz steht jedoch eine geringe Zerstörschwelle gegenüber. AFM-Messungen zeigten besonders bei den PAzo/PAH Multischichten sehr starke Veränderungen in der Struktur. Eine Quantisierung der induzierten Schallamplitude sollte durch eine optische Trennung von Wandler und Propagationmedium erreicht werden. Da die Trennschichten auch eine akustische Abkopplung bewirkten, ließen sich die Schallamplituden nicht bestimmen. Es wurde jedoch festgestellt, dass sich die Effizienz eines Aluminium-Wandlers durch das Aufbringen transparenter Polyelektrolytschichten deutlich steigern lässt. Die Herstellung von Ultraschall-Wandlern aus Polyelektrolyten erweitert die Möglichkeiten der Pikosekunden-Akustik. Zum einen können diese Wandler schnell und kostengünstig direkt auf fast jeder Oberfläche aufgebracht werden. Zum anderen sind Polyelektrolyte in einem breiten Spektralbereich transparent. Das ermöglicht Messungen von der Vorderseite, die bei herkömmlichen Aluminium-Wandlern nicht oder nur schwer realisierbar sind. KW - polyelectrolyte KW - plasmonics KW - picosecond acoustics KW - hypersound KW - nanoparticle KW - Polyelektrolyte KW - Pikosekundenakustik KW - Hyperschall KW - Plasmonik KW - Nanopartikel Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-80833 ER -