TY - JOUR A1 - Aichner, Bernhard A1 - Makhmudov, Zafar A1 - Rajabov, Iljomjon A1 - Zhang, Qiong A1 - Pausata, Francesco Salvatore R. A1 - Werner, Martin A1 - Heinecke, Liv A1 - Kuessner, Marie L. A1 - Feakins, Sarah J. A1 - Sachse, Dirk A1 - Mischke, Steffen T1 - Hydroclimate in the Pamirs Was Driven by Changes in Precipitation-Evaporation Seasonality Since theLast Glacial Period JF - Geophysical research letters N2 - The Central Asian Pamir Mountains (Pamirs) are a high-altitude region sensitive to climatic change, with only few paleoclimatic records available. To examine the glacial-interglacial hydrological changes in the region, we analyzed the geochemical parameters of a 31-kyr record from Lake Karakul and performed a set of experiments with climate models to interpret the results. delta D values of terrestrial biomarkers showed insolation-driven trends reflecting major shifts of water vapor sources. For aquatic biomarkers, positive delta D shifts driven by changes in precipitation seasonality were observed at ca. 31-30, 28-26, and 17-14 kyr BP. Multiproxy paleoecological data and modelling results suggest that increased water availability, induced by decreased summer evaporation, triggered higher lake levels during those episodes, possibly synchronous to northern hemispheric rapid climate events. We conclude that seasonal changes in precipitation-evaporation balance significantly influenced the hydrological state of a large waterbody such as Lake Karakul, while annual precipitation amount and inflows remained fairly constant. KW - climate KW - biomarker KW - geochemistry KW - modelling KW - paleoclimate KW - hydrology Y1 - 2019 U6 - https://doi.org/10.1029/2019GL085202 SN - 0094-8276 SN - 1944-8007 VL - 46 IS - 23 SP - 13972 EP - 13983 PB - American Geophysical Union CY - Washington ER -