TY - JOUR A1 - Borchert, Florian A1 - Mock, Andreas A1 - Tomczak, Aurelie A1 - Hügel, Jonas A1 - Alkarkoukly, Samer A1 - Knurr, Alexander A1 - Volckmar, Anna-Lena A1 - Stenzinger, Albrecht A1 - Schirmacher, Peter A1 - Debus, Jürgen A1 - Jäger, Dirk A1 - Longerich, Thomas A1 - Fröhling, Stefan A1 - Eils, Roland A1 - Bougatf, Nina A1 - Sax, Ulrich A1 - Schapranow, Matthieu-Patrick T1 - Knowledge bases and software support for variant interpretation in precision oncology JF - Briefings in bioinformatics N2 - Precision oncology is a rapidly evolving interdisciplinary medical specialty. Comprehensive cancer panels are becoming increasingly available at pathology departments worldwide, creating the urgent need for scalable cancer variant annotation and molecularly informed treatment recommendations. A wealth of mainly academia-driven knowledge bases calls for software tools supporting the multi-step diagnostic process. We derive a comprehensive list of knowledge bases relevant for variant interpretation by a review of existing literature followed by a survey among medical experts from university hospitals in Germany. In addition, we review cancer variant interpretation tools, which integrate multiple knowledge bases. We categorize the knowledge bases along the diagnostic process in precision oncology and analyze programmatic access options as well as the integration of knowledge bases into software tools. The most commonly used knowledge bases provide good programmatic access options and have been integrated into a range of software tools. For the wider set of knowledge bases, access options vary across different parts of the diagnostic process. Programmatic access is limited for information regarding clinical classifications of variants and for therapy recommendations. The main issue for databases used for biological classification of pathogenic variants and pathway context information is the lack of standardized interfaces. There is no single cancer variant interpretation tool that integrates all identified knowledge bases. Specialized tools are available and need to be further developed for different steps in the diagnostic process. KW - HiGHmed KW - personalized medicine KW - molecular tumor board KW - data integration KW - cancer therapy Y1 - 2021 U6 - https://doi.org/10.1093/bib/bbab134 SN - 1467-5463 SN - 1477-4054 VL - 22 IS - 6 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Kaitoua, Abdulrahman A1 - Rabl, Tilmann A1 - Markl, Volker T1 - A distributed data exchange engine for polystores JF - Information technology : methods and applications of informatics and information technology JF - Information technology : Methoden und innovative Anwendungen der Informatik und Informationstechnik N2 - There is an increasing interest in fusing data from heterogeneous sources. Combining data sources increases the utility of existing datasets, generating new information and creating services of higher quality. A central issue in working with heterogeneous sources is data migration: In order to share and process data in different engines, resource intensive and complex movements and transformations between computing engines, services, and stores are necessary. Muses is a distributed, high-performance data migration engine that is able to interconnect distributed data stores by forwarding, transforming, repartitioning, or broadcasting data among distributed engines' instances in a resource-, cost-, and performance-adaptive manner. As such, it performs seamless information sharing across all participating resources in a standard, modular manner. We show an overall improvement of 30 % for pipelining jobs across multiple engines, even when we count the overhead of Muses in the execution time. This performance gain implies that Muses can be used to optimise large pipelines that leverage multiple engines. KW - distributed systems KW - data migration KW - data transformation KW - big data KW - engine KW - data integration Y1 - 2020 U6 - https://doi.org/10.1515/itit-2019-0037 SN - 1611-2776 SN - 2196-7032 VL - 62 IS - 3-4 SP - 145 EP - 156 PB - De Gruyter CY - Berlin ER - TY - THES A1 - Bauckmann, Jana T1 - Dependency discovery for data integration T1 - Erkennen von Datenabhängigkeiten zur Datenintegration N2 - Data integration aims to combine data of different sources and to provide users with a unified view on these data. This task is as challenging as valuable. In this thesis we propose algorithms for dependency discovery to provide necessary information for data integration. We focus on inclusion dependencies (INDs) in general and a special form named conditional inclusion dependencies (CINDs): (i) INDs enable the discovery of structure in a given schema. (ii) INDs and CINDs support the discovery of cross-references or links between schemas. An IND “A in B” simply states that all values of attribute A are included in the set of values of attribute B. We propose an algorithm that discovers all inclusion dependencies in a relational data source. The challenge of this task is the complexity of testing all attribute pairs and further of comparing all of each attribute pair's values. The complexity of existing approaches depends on the number of attribute pairs, while ours depends only on the number of attributes. Thus, our algorithm enables to profile entirely unknown data sources with large schemas by discovering all INDs. Further, we provide an approach to extract foreign keys from the identified INDs. We extend our IND discovery algorithm to also find three special types of INDs: (i) Composite INDs, such as “AB in CD”, (ii) approximate INDs that allow a certain amount of values of A to be not included in B, and (iii) prefix and suffix INDs that represent special cross-references between schemas. Conditional inclusion dependencies are inclusion dependencies with a limited scope defined by conditions over several attributes. Only the matching part of the instance must adhere the dependency. We generalize the definition of CINDs distinguishing covering and completeness conditions and define quality measures for conditions. We propose efficient algorithms that identify covering and completeness conditions conforming to given quality thresholds. The challenge for this task is twofold: (i) Which (and how many) attributes should be used for the conditions? (ii) Which attribute values should be chosen for the conditions? Previous approaches rely on pre-selected condition attributes or can only discover conditions applying to quality thresholds of 100%. Our approaches were motivated by two application domains: data integration in the life sciences and link discovery for linked open data. We show the efficiency and the benefits of our approaches for use cases in these domains. N2 - Datenintegration hat das Ziel, Daten aus unterschiedlichen Quellen zu kombinieren und Nutzern eine einheitliche Sicht auf diese Daten zur Verfügung zu stellen. Diese Aufgabe ist gleichermaßen anspruchsvoll wie wertvoll. In dieser Dissertation werden Algorithmen zum Erkennen von Datenabhängigkeiten vorgestellt, die notwendige Informationen zur Datenintegration liefern. Der Schwerpunkt dieser Arbeit liegt auf Inklusionsabhängigkeiten (inclusion dependency, IND) im Allgemeinen und auf der speziellen Form der Bedingten Inklusionsabhängigkeiten (conditional inclusion dependency, CIND): (i) INDs ermöglichen das Finden von Strukturen in einem gegebenen Schema. (ii) INDs und CINDs unterstützen das Finden von Referenzen zwischen Datenquellen. Eine IND „A in B“ besagt, dass alle Werte des Attributs A in der Menge der Werte des Attributs B enthalten sind. Diese Arbeit liefert einen Algorithmus, der alle INDs in einer relationalen Datenquelle erkennt. Die Herausforderung dieser Aufgabe liegt in der Komplexität alle Attributpaare zu testen und dabei alle Werte dieser Attributpaare zu vergleichen. Die Komplexität bestehender Ansätze ist abhängig von der Anzahl der Attributpaare während der hier vorgestellte Ansatz lediglich von der Anzahl der Attribute abhängt. Damit ermöglicht der vorgestellte Algorithmus unbekannte Datenquellen mit großen Schemata zu untersuchen. Darüber hinaus wird der Algorithmus erweitert, um drei spezielle Formen von INDs zu finden, und ein Ansatz vorgestellt, der Fremdschlüssel aus den erkannten INDs filtert. Bedingte Inklusionsabhängigkeiten (CINDs) sind Inklusionsabhängigkeiten deren Geltungsbereich durch Bedingungen über bestimmten Attributen beschränkt ist. Nur der zutreffende Teil der Instanz muss der Inklusionsabhängigkeit genügen. Die Definition für CINDs wird in der vorliegenden Arbeit generalisiert durch die Unterscheidung von überdeckenden und vollständigen Bedingungen. Ferner werden Qualitätsmaße für Bedingungen definiert. Es werden effiziente Algorithmen vorgestellt, die überdeckende und vollständige Bedingungen mit gegebenen Qualitätsmaßen auffinden. Dabei erfolgt die Auswahl der verwendeten Attribute und Attributkombinationen sowie der Attributwerte automatisch. Bestehende Ansätze beruhen auf einer Vorauswahl von Attributen für die Bedingungen oder erkennen nur Bedingungen mit Schwellwerten von 100% für die Qualitätsmaße. Die Ansätze der vorliegenden Arbeit wurden durch zwei Anwendungsbereiche motiviert: Datenintegration in den Life Sciences und das Erkennen von Links in Linked Open Data. Die Effizienz und der Nutzen der vorgestellten Ansätze werden anhand von Anwendungsfällen in diesen Bereichen aufgezeigt. KW - Datenabhängigkeiten-Entdeckung KW - Datenintegration KW - Schema-Entdeckung KW - Link-Entdeckung KW - Inklusionsabhängigkeit KW - dependency discovery KW - data integration KW - schema discovery KW - link discovery KW - inclusion dependency Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-66645 ER - TY - BOOK A1 - Bauckmann, Jana A1 - Leser, Ulf A1 - Naumann, Felix T1 - Efficient and exact computation of inclusion dependencies for data integration N2 - Data obtained from foreign data sources often come with only superficial structural information, such as relation names and attribute names. Other types of metadata that are important for effective integration and meaningful querying of such data sets are missing. In particular, relationships among attributes, such as foreign keys, are crucial metadata for understanding the structure of an unknown database. The discovery of such relationships is difficult, because in principle for each pair of attributes in the database each pair of data values must be compared. A precondition for a foreign key is an inclusion dependency (IND) between the key and the foreign key attributes. We present with Spider an algorithm that efficiently finds all INDs in a given relational database. It leverages the sorting facilities of DBMS but performs the actual comparisons outside of the database to save computation. Spider analyzes very large databases up to an order of magnitude faster than previous approaches. We also evaluate in detail the effectiveness of several heuristics to reduce the number of necessary comparisons. Furthermore, we generalize Spider to find composite INDs covering multiple attributes, and partial INDs, which are true INDs for all but a certain number of values. This last type is particularly relevant when integrating dirty data as is often the case in the life sciences domain - our driving motivation. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 34 KW - Metadatenentdeckung KW - Metadatenqualität KW - Schemaentdeckung KW - Datenanalyse KW - Datenintegration KW - metadata discovery KW - metadata quality KW - schema discovery KW - data profiling KW - data integration Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-41396 SN - 978-3-86956-048-9 PB - Universitätsverlag Potsdam CY - Potsdam ER -