TY - JOUR A1 - Dieterich, Peter A1 - Lindemann, Otto A1 - Moskopp, Mats Leif A1 - Tauzin, Sebastien A1 - Huttenlocher, Anna A1 - Klages, Rainer A1 - Chechkin, Aleksei V. A1 - Schwab, Albrecht T1 - Anomalous diffusion and asymmetric tempering memory in neutrophil chemotaxis JF - PLoS Computational Biology : a new community journal N2 - Neutrophil granulocytes are essential for the first host defense. After leaving the blood circulation they migrate efficiently towards sites of inflammation. They are guided by chemoattractants released from cells within the inflammatory foci. On a cellular level, directional migration is a consequence of cellular front-rear asymmetry which is induced by the concentration gradient of the chemoattractants. The generation and maintenance of this asymmetry, however, is not yet fully understood. Here we analyzed the paths of chemotacting neutrophils with different stochastic models to gain further insight into the underlying mechanisms. Wildtype chemotacting neutrophils show an anomalous superdiffusive behavior. CXCR2 blockade and TRPC6-knockout cause the tempering of temporal correlations and a reduction of chemotaxis. Importantly, such tempering is found both in vitro and in vivo. These findings indicate that the maintenance of anomalous dynamics is crucial for chemotactic behavior and the search efficiency of neutrophils. The motility of neutrophils and their ability to sense and to react to chemoattractants in their environment are of central importance for the innate immunity. Neutrophils are guided towards sites of inflammation following the activation of G-protein coupled chemoattractant receptors such as CXCR2 whose signaling strongly depends on the activity of Ca2+ permeable TRPC6 channels. It is the aim of this study to analyze data sets obtained in vitro (murine neutrophils) and in vivo (zebrafish neutrophils) with a stochastic mathematical model to gain deeper insight into the underlying mechanisms. The model is based on the analysis of trajectories of individual neutrophils. Bayesian data analysis, including the covariances of positions for fractional Brownian motion as well as for exponentially and power-law tempered model variants, allows the estimation of parameters and model selection. Our model-based analysis reveals that wildtype neutrophils show pure superdiffusive fractional Brownian motion. This so-called anomalous dynamics is characterized by temporal long-range correlations for the movement into the direction of the chemotactic CXCL1 gradient. Pure superdiffusion is absent vertically to this gradient. This points to an asymmetric 'memory' of the migratory machinery, which is found both in vitro and in vivo. CXCR2 blockade and TRPC6-knockout cause tempering of temporal correlations in the chemotactic gradient. This can be interpreted as a progressive loss of memory, which leads to a marked reduction of chemotaxis and search efficiency of neutrophils. In summary, our findings indicate that spatially differential regulation of anomalous dynamics appears to play a central role in guiding efficient chemotactic behavior. KW - neutrophils KW - chemotaxis KW - autocorrelation KW - zebrafish KW - cell migration KW - covariance KW - brownian motion KW - stochastic processes Y1 - 2022 U6 - https://doi.org/10.1371/journal.pcbi.1010089 SN - 1553-734X SN - 1553-7358 VL - 18 IS - 5 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Seyrich, Maximilian A1 - Alirezaeizanjani, Zahra A1 - Beta, Carsten A1 - Stark, Holger T1 - Statistical parameter inference of bacterial swimming strategies JF - New journal of physics : the open-access journal for physics N2 - We provide a detailed stochastic description of the swimming motion of an E. coli bacterium in two dimension, where we resolve tumble events in time. For this purpose, we set up two Langevin equations for the orientation angle and speed dynamics. Calculating moments, distribution and autocorrelation functions from both Langevin equations and matching them to the same quantities determined from data recorded in experiments, we infer the swimming parameters of E. coli. They are the tumble rate lambda, the tumble time r(-1), the swimming speed v(0), the strength of speed fluctuations sigma, the relative height of speed jumps eta, the thermal value for the rotational diffusion coefficient D-0, and the enhanced rotational diffusivity during tumbling D-T. Conditioning the observables on the swimming direction relative to the gradient of a chemoattractant, we infer the chemotaxis strategies of E. coli. We confirm the classical strategy of a lower tumble rate for swimming up the gradient but also a smaller mean tumble angle (angle bias). The latter is realized by shorter tumbles as well as a slower diffusive reorientation. We also find that speed fluctuations are increased by about 30% when swimming up the gradient compared to the reversed direction. KW - E.coli KW - run and tumble KW - chemotaxis KW - stochastic processes KW - bacterial swimming strategies KW - parameter inference Y1 - 2018 U6 - https://doi.org/10.1088/1367-2630/aae72c SN - 1367-2630 VL - 20 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Nagel, Oliver A1 - Frey, Manuel A1 - Gerhardt, Matthias A1 - Beta, Carsten T1 - Harnessing Motile Amoeboid Cells as Trucks for Microtransport and -Assembly JF - Advanced science N2 - Cell-driven microtransport is one of the most prominent applications in the emerging field of biohybrid systems. While bacterial cells have been successfully employed to drive the swimming motion of micrometer-sized cargo particles, the transport capacities of motile adherent cells remain largely unexplored. Here, it is demonstrated that motile amoeboid cells can act as efficient and versatile trucks to transport microcargo. When incubated together with microparticles, cells of the social amoeba Dictyostelium discoideum readily pick up and move the cargo particles. Relying on the unspecific adhesive properties of the amoeba, a wide range of different cargo materials can be used. The cell-driven transport can be directionally guided based on the chemotactic responses of amoeba to chemoattractant gradients. On the one hand, the cargo can be assembled into clusters in a self-organized fashion, relying on the developmentally induced chemotactic aggregation of cells. On the other hand, chemoattractant gradients can be externally imposed to guide the cellular microtrucks to a desired location. Finally, larger cargo particles of different shapes that exceed the size of a single cell by more than an order of magnitude, can also be transported by the collective effort of large numbers of motile cells. KW - biohybrid microsystems KW - chemotaxis KW - Dictyostelium discoideum KW - microtransport and -assembly Y1 - 2018 U6 - https://doi.org/10.1002/advs.201801242 SN - 2198-3844 VL - 6 IS - 3 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Hsu, H. F. A1 - Krekhov, Andrey A1 - Tarantola, Marco A1 - Beta, Carsten A1 - Bodenschatz, Eberhardt T1 - Interplay between myosin II and actin dynamics in chemotactic amoeba JF - New journal of physics : the open-access journal for physics N2 - The actin cytoskeleton and its response to external chemical stimuli is fundamental to the mechano-biology of eukaryotic cells and their functions. One of the key players that governs the dynamics of the actin network is the motor protein myosin II. Based on a phase space embedding we have identified from experiments three phases in the cytoskeletal dynamics of starved Dictyostelium discoideum in response to a precisely controlled chemotactic stimulation. In the first two phases the dynamics of actin and myosin II in the cortex is uncoupled, while in the third phase the time scale for the recovery of cortical actin is determined by the myosin II dynamics. We report a theoretical model that captures the experimental observations quantitatively. The model predicts an increase in the optimal response time of actin with decreasing myosin II-actin coupling strength highlighting the role of myosin II in the robust control of cell contraction. KW - actin KW - myosin II KW - chemotaxis KW - oscillations KW - coupling KW - delay differential equation KW - contraction Y1 - 2019 U6 - https://doi.org/10.1088/1367-2630/ab5822 SN - 1367-2630 VL - 21 IS - 11 PB - IOP Publ. Ltd. CY - Bristol ER - TY - GEN A1 - Seyrich, Maximilian A1 - Alirezaeizanjani, Zahra A1 - Beta, Carsten A1 - Stark, Holger T1 - Statistical parameter inference of bacterial swimming strategies T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We provide a detailed stochastic description of the swimming motion of an E. coli bacterium in two dimension, where we resolve tumble events in time. For this purpose, we set up two Langevin equations for the orientation angle and speed dynamics. Calculating moments, distribution and autocorrelation functions from both Langevin equations and matching them to the same quantities determined from data recorded in experiments, we infer the swimming parameters of E. coli. They are the tumble rate lambda, the tumble time r(-1), the swimming speed v(0), the strength of speed fluctuations sigma, the relative height of speed jumps eta, the thermal value for the rotational diffusion coefficient D-0, and the enhanced rotational diffusivity during tumbling D-T. Conditioning the observables on the swimming direction relative to the gradient of a chemoattractant, we infer the chemotaxis strategies of E. coli. We confirm the classical strategy of a lower tumble rate for swimming up the gradient but also a smaller mean tumble angle (angle bias). The latter is realized by shorter tumbles as well as a slower diffusive reorientation. We also find that speed fluctuations are increased by about 30% when swimming up the gradient compared to the reversed direction. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 914 KW - E. coli KW - run and tumble KW - chemotaxis KW - stochastic processes KW - bacterial swimming strategies KW - parameter inference Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-446214 SN - 1866-8372 IS - 914 ER - TY - THES A1 - Hintsche, Marius T1 - Locomotion of a bacterium with a polar bundle of flagella T1 - Fortbewegung eines Bakteriums mit einem polaren Flagellenbündel BT - insights into movement and navigation by fluorescence high speed microscopy BT - Erkentnisse über Bewegung und Navigation mittels Hochgeschwindigkeitsfluoreszenzmikroskopie N2 - Movement and navigation are essential for many organisms during some parts of their lives. This is also true for bacteria, which can move along surfaces and swim though liquid environments. They are able to sense their environment, and move towards environmental cues in a directed fashion. These abilities enable microbial lifecyles in biofilms, improved food uptake, host infection, and many more. In this thesis we study aspects of the swimming movement - or motility - of the soil bacterium (P. putida). Like most bacteria, P. putida swims by rotating its helical flagella, but their arrangement differs from the main model organism in bacterial motility research: (E. coli). P. putida is known for its intriguing motility strategy, where fast and slow episodes can occur after each other. Up until now, it was not known how these two speeds can be produced, and what advantages they might confer to this bacterium. Normally the flagella, the main component of thrust generation in bacteria, are not observable by ordinary light microscopy. In order to elucidate this behavior, we therefore used a fluorescent staining technique on a mutant strain of this species to specifically label the flagella, while leaving the cell body only faintly stained. This allowed us to image the flagella of the swimming bacteria with high spacial and temporal resolution with a customized high speed fluorescence microscopy setup. Our observations show that P. putida can swim in three different modes. First, It can swim with the flagella pushing the cell body, which is the main mode of swimming motility previously known from other bacteria. Second, it can swim with the flagella pulling the cell body, which was thought not to be possible in situations with multiple flagella. Lastly, it can wrap its flagellar bundle around the cell body, which results in a speed wich is slower by a factor of two. In this mode, the flagella are in a different physical conformation with a larger radius so the cell body can fit inside. These three swimming modes explain the previous observation of two speeds, as well as the non strict alternation of the different speeds. Because most bacterial swimming in nature does not occur in smoothly walled glass enclosures under a microscope, we used an artificial, microfluidic, structured system of obstacles to study the motion of our model organism in a structured environment. Bacteria were observed in microchannels with cylindrical obstacles of different sizes and with different distances with video microscopy and cell tracking. We analyzed turning angles, run times, and run length, which we compared to a minimal model for movement in structured geometries. Our findings show that hydrodynamic interactions with the walls lead to a guiding of the bacteria along obstacles. When comparing the observed behavior with the statics of a particle that is deflected with every obstacle contact, we find that cells run for longer distances than that model. Navigation in chemical gradients is one of the main applications of motility in bacteria. We studied the swimming response of P. putida cells to chemical stimuli (chemotaxis) of the common food preservative sodium benzoate. Using a microfluidic gradient generation device, we created gradients of varying strength, and observed the motion of cells with a video microscope and subsequent cell tracking. Analysis of different motility parameters like run lengths and times, shows that P. putida employs the classical chemotaxis strategy of E. coli: runs up the gradient are biased to be longer than those down the gradient. Using the two different run speeds we observed due to the different swimming modes, we classify runs into `fast' and `slow' modes with a Gaussian mixture model (GMM). We find no evidence that P. putida's uses its swimming modes to perform chemotaxis. In most studies of bacterial motility, cell tracking is used to gather trajectories of individual swimming cells. These trajectories then have to be decomposed into run sections and tumble sections. Several algorithms have been developed to this end, but most require manual tuning of a number of parameters, or extensive measurements with chemotaxis mutant strains. Together with our collaborators, we developed a novel motility analysis scheme, based on generalized Kramers-Moyal-coefficients. From the underlying stochastic model, many parameters like run length etc., can be inferred by an optimization procedure without the need for explicit run and tumble classification. The method can, however, be extended to a fully fledged tumble classifier. Using this method, we analyze E. coli chemotaxis measurements in an aspartate analog, and find evidence for a chemotactic bias in the tumble angles. N2 - Bewegung und Navigation sind für viele Organismen in einigen Bereichen ihres Lebens unerlässlich. Dies gilt auch für Bakterien, die sich entlang von Oberflächen bewegen und durch Flüssigkeiten schwimmen können. Sie sind in der Lage, ihre Umgebung wahr zu nehmen und sich gezielt auf Signale in der Umwelt zuzubewegen. Diese Fähigkeiten ermöglichen mikrobielle Lebenszyklen in Biofilmen, verbesserte Nahrungsaufnahme, Wirtsinfektion und vieles mehr. In dieser Arbeit untersuchen wir Aspekte der Schwimmbewegung - oder Motilität - des Bodenbakteriums Pseudomonas putida (P. putida). Wie die meisten Bakterien schwimmt P. putida durch Rotation seiner schraubenförmigen Flagellen, aber ihre Anordnung unterscheidet sich vom Hauptmodellorganismus in der bakteriellen Motilitätsforschung: Escherichia coli (E. coli). P. putida ist bekannt für seine faszinierende Motilitätsstrategie, bei der schnelle und langsame Episoden hintereinander auftreten können. Bislang war nicht bekannt, wie diese beiden Geschwindigkeiten erzeugt werden können und welche Vorteile sie diesem Bakterium bringen können. Normalerweise sind die Flagellen, die Hauptkomponente der Schuberzeugung bei Bakterien, mit herkömmlicher Lichtmikroskopie nicht zu beobachten. Um dieses Verhalten zu verdeutlichen, haben wir daher eine Fluoreszenzfärbetechnik an einem Mutantenstamm dieser Spezies eingesetzt, um die Flagellen spezifisch zu markieren und gleichzeitig den Zellkörper nur schwach gefärbt zu lassen. Dies ermöglichte es uns, die Geißeln der schwimmenden Bakterien mit hoher räumlicher und zeitlicher Auflösung mit einem maßgeschneiderten Hochgeschwindigkeits-Fluoreszenzmikroskopie-Setup darzustellen. Unsere Beobachtungen zeigen, dass P. putida in drei verschiedenen Modi schwimmen kann. Erstens kann es mit den Flagellen den Zellkörper vorwärts drücken, was der wichtigste Modus der Schwimmmotilität ist, der zuvor von anderen Bakterien bekannt war. Zweitens kann es mit den Flagellen den Zellkörper hinter sich her ziehen, was in Situationen mit mehreren Flagellen für nicht möglich gehalten wurde. Schließlich kann es sein Flagellenbündel um den Zellkörper wickeln, was zu einer um den Faktor zwei verlangsamten Geschwindigkeit führt. In diesem Modus befinden sich die Flagellen in einer anderen physikalischen Konformation mit einem größeren Radius, so dass der Zellkörper hineinpassen kann. Diese drei Schwimmmodi erklären die vorherige Beobachtung von zwei Geschwindigkeiten sowie das nicht strenge Abwechseln der verschiedenen Geschwindigkeiten. Da das Schwimmen von Bakterien in der Natur nicht in glattwandigen Glaskammern unter dem Mikroskop stattfindet, haben wir ein künstliches, mikrofluidisches, strukturiertes System von Hindernissen verwendet, um die Bewegung unseres Modellorganismus in einer strukturierten Umgebung zu untersuchen. Bakterien wurden in Mikrokanälen mit zylindrischen Hindernissen unterschiedlicher Größe und mit unterschiedlichen Abständen mit Videomikroskopie und Zelltracking beobachtet. Wir analysierten Turn-Winkel, Run-Zeiten und Run-Längen, die wir mit einem Minimalmodell für die Bewegung in strukturierten Geometrien verglichen haben. Unsere Ergebnisse zeigen, dass hydrodynamische Wechselwirkungen mit den Wänden zu einer Leitung der Bakterien entlang von Hindernissen führen. Vergleicht man das beobachtete Verhalten mit der Statik eines Partikels, das bei jedem Hinderniskontakt umgelenkt wird, so stellt man fest, dass Zellen über längere Strecken Laufen als in dieses Modell. Die Navigation in chemischen Gradienten ist eine der Hauptapplikation der Motilität bei Bakterien. Wir untersuchten die Schwimmreaktion von P. putida Zellen auf chemische Reize (Chemotaxis) des gängigen Lebensmittelkonservierungsmittels Natriumbenzoat. Mit einem mikrofluidischen Gradientengenerator erzeugten wir Gradienten unterschiedlicher Stärke und beobachteten die Bewegung der Zellen mit einem Videomikroskop und anschließendem Zelltracking. Die Analyse verschiedener Motilitätsparameter wie Lauflängen und -zeiten zeigt, dass P. putida die klassische Chemotaxiestrategie von E. coli anwendet: Läufe gradientenaufwärts sind im Mittel länger sein als solche gradientenabwärts. Mit den beiden verschiedenen Laufgeschwindigkeiten, die wir aufgrund der unterschiedlichen Schwimmmodi beobachtet haben, klassifizieren wir Läufe in schnelle und langsame Modi mit einem "Gaussian Mixture Model" (GMM). Wir finden keinen Beweis dafür, dass P. putida seine Schwimmmodi nutzt, um Chemotaxis durchzuführen. In den meisten Studien zur bakteriellen Motilität wird das Zelltracking verwendet, um die Trajektorien einzelner schwimmender Zellen zu erfassen. Diese Trajektorien müssen dann in Lauf- und Wendeabschnitte (Runs und Turns) zerlegt werden. Mehrere Algorithmen wurden zu diesem Zweck entwickelt, aber die meisten erfordern eine manuelle Abstimmung einer Reihe von Parametern oder umfangreiche Messungen mit chemotaktischen Mutantenstämmen. Zusammen mit unseren Mitarbeitern haben wir ein neuartiges Motilitätsanalyseschema entwickelt, das auf verallgemeinerten Kramers-Moyal-Koeffizienten basiert. Aus dem zugrunde liegenden stochastischen Modell können viele Parameter wie Lauflänge etc. durch ein Optimierungsverfahren abgeleitet werden, ohne dass eine explizite Run und Turn Klassifizierung erforderlich ist. Das Verfahren kann jedoch zu einem vollwertigen Klassifizierer ausgebaut werden. Mit dieser Methode analysieren wir E. coli Chemotaxis Messungen in einem Gradienten eines Aspartat analogen Chemoattractors und finden Beweise für eine chemotaktische Variation der Tumble-Winkeln. KW - bacteria KW - motility KW - chemotaxis KW - Bakterien KW - Motilität KW - Chemotaxis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-426972 ER - TY - THES A1 - Anielski, Alexander T1 - Entwicklung einer mikrofluidischen, adaptiv geregelten Messapparatur zur quantitativen Untersuchung von Chemotaxis mit Hilfe der Flussfotolyse KW - Flussfotolyse KW - Konzentration KW - Chemotaxis KW - Mikrokanal KW - Dictyostelium KW - flow photolysis KW - concentration KW - chemotaxis KW - microchannel KW - Dictyostelium Y1 - 2015 ER - TY - GEN A1 - Barbosa Pfannes, Eva Katharina A1 - Anielski, Alexander A1 - Gerhardt, Matthias A1 - Beta, Carsten T1 - Intracellular photoactivation of caged cGMP induces myosin II and actin responses in motile cells N2 - Cyclic GMP (cGMP) is a ubiquitous second messenger in eukaryotic cells. It is assumed to regulate the association of myosin II with the cytoskeleton of motile cells. When cells of the social amoeba Dictyostelium discoideum are exposed to chemoattractants or to increased osmotic stress, intracellular cGMP levels rise, preceding the accumulation of myosin II in the cell cortex. To directly investigate the impact of intracellular cGMP on cytoskeletal dynamics in a living cell, we released cGMP inside the cell by laser-induced photo-cleavage of a caged precursor. With this approach, we could directly show in a live cell experiment that an increase in intracellular cGMP indeed induces myosin II to accumulate in the cortex. Unexpectedly, we observed for the first time that also the amount of filamentous actin in the cell cortex increases upon a rise in the cGMP concentration, independently of cAMP receptor activation and signaling. We discuss our results in the light of recent work on the cGMP signaling pathway and suggest possible links between cGMP signaling and the actin system. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 239 KW - cyclic-gmp KW - dictyostelium-discoideum KW - ena/vasp proteins KW - osmotic-stress KW - chemotaxis KW - phosphorylation KW - amp KW - cytoskeleton KW - oscillations KW - chemoattractant Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-94984 SP - 1456 EP - 1463 ER -