TY - JOUR A1 - Korup, Oliver A1 - Hayakawa, Yuichi A1 - Codilean, Alexandru T. A1 - Matsushi, Yuki A1 - Saito, Hitoshi A1 - Oguchi, Takashi A1 - Matsuzaki, Hiroyuki T1 - Japan's sediment flux to the Pacific Ocean revisited JF - Earth science reviews : the international geological journal bridging the gap between research articles and textbooks N2 - Quantifying volumes and rates of delivery of terrestrial sediment from island arcs to subduction zones is indispensable for refining estimates of the thickness of trench fills that may eventually control the location and timing of submarine landslides and tsunami-generating mega-earthquakes. Despite these motivating insights, knowledge about the rates of erosion and sediment export from the Japanese islands to their Pacific subduction zones remains patchy regardless of the increasing availability of highly resolved data on surface deformation, climate, geology, and topography. Traditionally, natural erosion rates across the island arc have been estimated from regression of topographic catchment metrics and reservoir sedimentation rates that were recorded over several years to decades. We review current research in this context, correct for a systematic bias in one of the most widely used predictions, and present new estimates of decadal to millennial-scale erosion rates of Japan's terrestrial inner forearc. We draw on several independent and unprecedented inventories of mass wasting, reservoir sedimentation, and concentrations of cosmogenic Be-10 in river sands. We find that natural Be-10-derived denudation rates of several mm yr(-1) in the Japanese Alps have been sustained over several centuries to millennia, and are, within error, roughly consistent with sediment yields inferred from artificial reservoir sedimentation. Local exceptions may likely result from release of sediment storage or regional landsliding episodes that trigger transient sediment pulses. Our synopsis further reveals that catchments draining Japan's eastern seaboard differ distinctly in their tectonic, lithological, topographic, and climatic characteristics between the Tohoku, Japanese Alps, and Nankai inner forearc segments, which is underscored by a marked asymmetric pattern of erosion rates along the island arc. Erosion rates are highest (up to at least 3 mm yr(-1)) in the Japanese Alps that mark the collision of two subduction zones, where high topographic relief, hillslope and bedrock-channel steepness foster rapid denudation by mass wasting. Comparable, if slightly lower, erosion rates characterise the Nankai inner forearc in southwest Japan, most likely due to higher typhoon-driven rainfall totals and variability rather than its high topographic relief. In contrast, our estimated erosion and flux rates are lowest in the Tohoku inner forearc catchments that feed sediment into the Japan Trench. We conclude that collisional mountain building of the Japanese Alps drives some of the highest erosion rates in the island arc despite similar uplift and precipitation controls in southwest Japan. We infer that, prior to extensive river damming, reservoir construction, and coastal works, the gross of Japan's total sediment export to the Pacific Ocean entered the accretionary margin of the Nankai Trough as opposed to the comparatively sediment-starved Japan Trench. Compared to documented contemporary rates of sediment flux from mountainous catchments elsewhere in the Pacific, the rivers draining Japan's inner forearc take an intermediate position despite high relief, steep slopes, very high seismicity, and frequent rainstorms. However, the average rates of millennial-scale denudation in the Japanese Alps particularly are amongst the highest reported worldwide. Local mismatches between these late Holocene and modern rates emphasise the anthropogenic fingerprint on sediment retention that may have significantly reduced the island arc's mass flux to its subduction zones, as is the case elsewhere in east and southeast Asia. (C) 2014 Elsevier B.V. All rights reserved. KW - Erosion KW - Japan KW - Subduction zone KW - Landslides KW - Cosmogenic nuclides KW - Sediment budget Y1 - 2014 U6 - https://doi.org/10.1016/j.earscirev.2014.03.004 SN - 0012-8252 SN - 1872-6828 VL - 135 SP - 1 EP - 16 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Lopez-Tarazon, Jose Andres A1 - Batalla Villanueva, Ramon J. A1 - Vericat, Damia A1 - Francke, Till T1 - The sediment budget of a highly dynamic mesoscale catchment the River Isabena JF - Geomorphology : an international journal on pure and applied geomorphology N2 - The paper presents the sediment budget of the Isabena basin, a highly dynamic 445-km(2) catchment located in the Central Pyrenees that is patched by highly erodible areas (i.e., badlands). The budget for the period 2007-2009 is constructed following a methodology that allows the interpolation of intermittent measurements of suspended sediment concentrations and enables a subsequent calculation of sediment loads. Data allow specification of the contribution of each subbasin to the water and sediment yield in the catchment outlet. Mean annual sediment load was 235,000 t y(-1). Specific sediment yield reached 2000 t km(-2) y(-1), a value that indicates very high sedimentary activity, especially in the case of Villacarli and Lascuarre subcatchments, were most badlands are located. The specific sediment yield obtained for the entire Isabena is 527 t km(-2) y(-1), a high value for such a mesoscale basin. Results show that a small part of the area (i.e., 1%) controls most of the catchment's gross sediment contribution. Sediment delivery ratio (ratio between sediment input from primary sources and basin export) has been estimated at around 90%, while in-channel storage represents the 5% of the annual load on average. The high connectivity between sediment sources (i.e., badlands) and transfer paths (i.e., streamcourses) exacerbates the influence of the local sediment production on the catchment's sediment yield, a quite unusual fact for a basin of this scale. KW - Sediment budget KW - Sediment transport KW - Random forests KW - Quantile regression forests KW - River Isabena KW - Ebro basin Y1 - 2012 U6 - https://doi.org/10.1016/j.geomorph.2011.08.020 SN - 0169-555X VL - 138 IS - 1 SP - 15 EP - 28 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Fan, Xuanmei A1 - van Westen, Cees J. A1 - Korup, Oliver A1 - Gorum, Tolga A1 - Xu, Qiang A1 - Dai, Fuchu A1 - Huang, Runqiu A1 - Wang, Gonghui T1 - Transient water and sediment storage of the decaying landslide dams induced by the 2008 Wenchuan earthquake, China JF - Geomorphology : an international journal on pure and applied geomorphology N2 - Earthquake-triggered landslide dams are potentially dangerous disrupters of water and sediment flux in mountain rivers, and capable of releasing catastrophic outburst flows to downstream areas. We analyze an inventory of 828 landslide dams in the Longmen Shan mountains, China, triggered by the M-w 7.9 2008 Wenchuan earthquake. This database is unique in that it is the largest of its kind attributable to a single regional-scale triggering event: 501 of the spatially clustered landslides fully blocked rivers, while the remainder only partially obstructed or diverted channels in steep watersheds of the hanging wall of the Yingxiu-Beichuan Fault Zone. The size distributions of the earthquake-triggered landslides, landslide dams, and associated lakes (a) can be modeled by an inverse gamma distribution; (b) show that moderate-size slope failures caused the majority of blockages; and (c) allow a detailed assessment of seismically induced river-blockage effects on regional water and sediment storage. Monte Carlo simulations based on volumetric scaling relationships for soil and bedrock failures respectively indicate that 14% (18%) of the estimated total coseismic landslide volume of 6.4 (14.6) x 10(9) m(3) was contained in landslide dams, representing only 1.4% of the >60,000 slope failures attributed to the earthquake. These dams have created storage capacity of similar to 0.6x 10(9) m(3) for incoming water and sediment. About 25% of the dams containing 2% of the total river-blocking debris volume failed one week after the earthquake; these figures had risen to 60% (similar to 20%), and >90% (>90%) within one month, and one:year, respectively, thus also emptying similar to 92% of the total potential water and sediment storage behind these, dams within one year following the earthquake. Currently only similar to 0.08 x 10(9) m(3) remain available as natural reservoirs for storing water and sediment, while similar to 0.19 x 10(9) m(3), i.e. about a third of the total river-blocking debris volume, has been eroded by rivers. Dam volume and upstream catchment area control to first order the longevity of the barriers, and bivariate domain plots are consistent with the observation that most earthquake-triggered landslide dams were ephemeral. We conclude that the river-blocking portion of coseismic slope failures disproportionately modulates the post-seismic sediment flux in the Longmen Shan on annual to decadal timescales. KW - Landslide dam KW - Earthquake KW - Magnitude and frequency KW - Sediment budget Y1 - 2012 U6 - https://doi.org/10.1016/j.geomorph.2012.05.003 SN - 0169-555X VL - 171 SP - 58 EP - 68 PB - Elsevier CY - Amsterdam ER -