TY - JOUR A1 - Synodinos, Alexios D. A1 - Tietjen, Britta A1 - Jeltsch, Florian T1 - Facilitation in drylands: Modeling a neglected driver of savanna dynamics JF - Ecological modelling : international journal on ecological modelling and engineering and systems ecolog N2 - Our current understanding regarding the functioning of the savanna ecosystem describes savannas as either competition- or disturbance-dependent. Within this generalized view, the role and importance of facilitation have been mostly neglected. This study presents a mathematical model of savannas with coupled soil moisture-vegetation dynamics, which includes interspecific competition and environmental disturbance. We find that there exist environmental and climatic conditions where grass facilitation toward trees plays an important role in supporting tree cover and by extension preserving the savanna biome. We, therefore, argue that our theoretical results in combination with the first empirical studies on the subject should stimulate further research into the role of facilitation in the savanna ecosystem, particularly when analyzing the impact of past and projected climatic changes on it. (C) 2015 Elsevier B.V. All rights reserved. KW - Ecohydrological modeling KW - ODE model KW - Coexistence KW - Biome shifts KW - Fire KW - Grazing Y1 - 2015 U6 - https://doi.org/10.1016/j.ecolmodel.2015.02.015 SN - 0304-3800 SN - 1872-7026 VL - 304 SP - 11 EP - 21 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Klaus, Valentin H. A1 - Kleinebecker, Till A1 - Hoelzel, Norbert A1 - Bluethgen, Nico A1 - Boch, Steffen A1 - Müller, Jörg A1 - Socher, Stephanie A. A1 - Prati, Daniel A1 - Fischer, Markus T1 - Nutrient concentrations and fibre contents of plant community biomass reflect species richness patterns along a broad range of land-use intensities among agricultural grasslands JF - Perspectives in plant ecology, evolution and systematics N2 - Understanding changes in biodiversity in agricultural landscapes in relation to land-use type and intensity is a major issue in current ecological research. In this context nutrient enrichment has been identified as a key mechanism inducing species loss in Central European grassland ecosystems. At the same time, insights into the linkage between agricultural land use and plant nutrient status are largely missing. So far, studies on the relationship between chemical composition of plant community biomass and biodiversity have mainly been restricted to wetlands and all these studies neglected the effects of land use. Therefore, we analyzed aboveground biomass of 145 grassland plots covering a gradient of land-use intensities in three regions across Germany. In particular, we explored relationships between vascular plant species richness and nutrient concentrations as well as fibre contents (neutral and acid detergent fibre and lignin) in the aboveground community biomass. We found the concentrations of several nutrients in the biomass to be closely linked to plant species richness and land use. Whereas phosphorus concentrations increased with land-use intensity and decreased with plant species richness, nitrogen and potassium concentrations showed less clear patterns. Fibre fractions were negatively related to nutrient concentrations in biomass, but hardly to land-use measures and species richness. Only high lignin contents were positively associated with species richness of grasslands. The N:P ratio was strongly positively related to species richness and even more so to the number of endangered plant species, indicating a higher persistence of endangered species under P (co-)limited conditions. Therefore, we stress the importance of low P supply for species-rich grasslands and suggest the N:P ratio in community biomass to be a useful proxy of the conservation value of agriculturally used grasslands. KW - Biodiversity exploratories KW - Fertilization KW - Grazing KW - Land use KW - Mowing KW - Nitrogen KW - Nutrient limitation KW - Phosphorus KW - Productivity Y1 - 2011 U6 - https://doi.org/10.1016/j.ppees.2011.07.001 SN - 1433-8319 VL - 13 IS - 4 SP - 287 EP - 295 PB - Elsevier CY - Jena ER - TY - JOUR A1 - Kloss, Lena A1 - Fischer, Markus A1 - Durka, Walter T1 - Land-use effects on genetic structure of a common grassland herb a matter of scale JF - Basic and applied ecology : Journal of the Gesellschaft für Ökologie N2 - The most common management practices in European grasslands are grazing by livestock and mowing for silage and hay. Grazing and mowing differ in their potential effects on plant gene flow and resulting population genetic structure. After assessing its breeding system, we investigated the effect of land use on the population genetic structure in the common grassland plant Veronica chamaedrys using 63 study populations on meadows, mown pastures and pastures in three regions in Germany, the so-called Biodiversity Exploratories. We determined plant density and analysed the genetic diversity, differentiation and small-scale genetic structure using amplified fragment length polymorphism (AFLP) markers. The breeding system of V chamaedrys turned out as self-incompatible and outcrossing. Its genetic diversity did not differ among land-use types. This may be attributed to large population sizes and the strong dispersal ability of the species, which maintains genetically diverse populations not prone to genetic drift. Genetic differentiation among populations was low (overall F(ST) = 0.075) but significant among the three regions. Land use had only weak effects on population differentiation in only one region. However, land use affected small-scale genetic structure suggesting that gene flow within plots was more restricted on meadows than on mown and unmown pastures. Our study shows that land use influences genetic structure mainly at the small scale within populations, despite high gene flow. KW - Biodiversity exploratories KW - Mowing KW - Grazing KW - AFLP KW - Veronica KW - Breeding system KW - Pollination experiment KW - Pollen-ovule ratio KW - Isolation by distance KW - Spatial autocorrelation Y1 - 2011 U6 - https://doi.org/10.1016/j.baae.2011.06.001 SN - 1439-1791 VL - 12 IS - 5 SP - 440 EP - 448 PB - Elsevier CY - Jena ER -