TY - THES A1 - Schifferle, Lukas T1 - Optical properties of (Mg,Fe)O at high pressure T1 - Optische Eigenschaften von (Mg,Fe)O unter Hochdruck N2 - Large parts of the Earth’s interior are inaccessible to direct observation, yet global geodynamic processes are governed by the physical material properties under extreme pressure and temperature conditions. It is therefore essential to investigate the deep Earth’s physical properties through in-situ laboratory experiments. With this goal in mind, the optical properties of mantle minerals at high pressure offer a unique way to determine a variety of physical properties, in a straight-forward, reproducible, and time-effective manner, thus providing valuable insights into the physical processes of the deep Earth. This thesis focusses on the system Mg-Fe-O, specifically on the optical properties of periclase (MgO) and its iron-bearing variant ferropericlase ((Mg,Fe)O), forming a major planetary building block. The primary objective is to establish links between physical material properties and optical properties. In particular the spin transition in ferropericlase, the second-most abundant phase of the lower mantle, is known to change the physical material properties. Although the spin transition region likely extends down to the core-mantle boundary, the ef-fects of the mixed-spin state, where both high- and low-spin state are present, remains poorly constrained. In the studies presented herein, we show how optical properties are linked to physical properties such as electrical conductivity, radiative thermal conductivity and viscosity. We also show how the optical properties reveal changes in the chemical bonding. Furthermore, we unveil how the chemical bonding, the optical and other physical properties are affected by the iron spin transition. We find opposing trends in the pres-sure dependence of the refractive index of MgO and (Mg,Fe)O. From 1 atm to ~140 GPa, the refractive index of MgO decreases by ~2.4% from 1.737 to 1.696 (±0.017). In contrast, the refractive index of (Mg0.87Fe0.13)O (Fp13) and (Mg0.76Fe0.24)O (Fp24) ferropericlase increases with pressure, likely because Fe Fe interactions between adjacent iron sites hinder a strong decrease of polarizability, as it is observed with increasing density in the case of pure MgO. An analysis of the index dispersion in MgO (decreasing by ~23% from 1 atm to ~103 GPa) reflects a widening of the band gap from ~7.4 eV at 1 atm to ~8.5 (±0.6) eV at ~103 GPa. The index dispersion (between 550 and 870 nm) of Fp13 reveals a decrease by a factor of ~3 over the spin transition range (~44–100 GPa). We show that the electrical band gap of ferropericlase significantly widens up to ~4.7 eV in the mixed spin region, equivalent to an increase by a factor of ~1.7. We propose that this is due to a lower electron mobility between adjacent Fe2+ sites of opposite spin, explaining the previously observed low electrical conductivity in the mixed spin region. From the study of absorbance spectra in Fp13, we show an increasing covalency of the Fe-O bond with pressure for high-spin ferropericlase, whereas in the low-spin state a trend to a more ionic nature of the Fe-O bond is observed, indicating a bond weakening effect of the spin transition. We found that the spin transition is ultimately caused by both an increase of the ligand field-splitting energy and a decreasing spin-pairing energy of high-spin Fe2+. N2 - Geodynamische Prozesse werden von den physikalischen Materialeigenschaften unter den extremen Druck- und Temperaturbedingungen des Erdinneren gesteuert, gerade diese Areale sind aber faktisch nicht für direkte Beobachtungen zugänglich. Umso wichtiger ist es, die physikalischen Eigenschaften unter Bedingungen des Erdinneren zu untersuchen. Mit diesem Ziel vor Augen erlaubt das Studium der optischen Eigenschaften von Mineralen des Erdmantels, eine große Bandbreite an physikalischen Materialeigenschaften, in einer einfachen, reproduzierbaren und effizienten Art und Weise zu bestimmen. Dadurch bieten sich wichtige Einblicke in die physikalischen Prozessen des Erdinneren. Die vorliegende Arbeit konzentriert sich auf das System Mg-Fe-O, im Speziellen auf Periklas (MgO) und seine Eisen-haltige Variante Ferroperiklas ((Mg,Fe)O), ein wichtiger Baustein planetarer Körper. Das Hauptziel der Arbeit besteht darin Verbindungen zwischen optischen Eigenschaften und physikalischen Materialeigenschaften zu finden. Gerade der Spin-Übergang in Ferroperiklas, der zweithäufigsten Phase des unteren Erdmantels, ist dabei von Bedeutung, da damit Veränderungen in den physikalischen Materialeigenschaften einhergehen. Obwohl sich der Spinübergangsbereich vermutlich bis zur Kern-Mantel-Grenze erstreckt, sind die Auswirkungen des gemischten Spin-Zustandes, bei dem sowohl Hoch- als auch Tief-Spin präsent sind, nur unzureichend untersucht. Die hier vorgestellten Studien zeigen, wie optische Eigenschaften mit anderen wichtigen physikalischen Eigenschaften wie elektrischer und thermischer Leitfähigkeit, Viskosität oder auch mit der chemischen Bindung verbunden sind. Daraus lässt sich auch ableiten wie der Spin-Übergang in Ferroperiklas diese Eigenschaften beeinflusst. Von Raumbedingungen bis zu ~140 GPa sinkt der Brechungsindex von MgO um ~2.4 % von 1.737 auf 1.696 (±0.017). Im Gegensatz dazu steigt der Brechungsindex von (Mg0.87Fe0.13)O (Fp13) und (Mg0.76Fe0.24)O (Fp24) Ferroperiklas mit dem Druck an. Dies ist auf Fe-Fe Wechselwirkungen zwischen benachbarten Eisenpositionen zurückzuführen, die eine starke Verringerung der Polarisierbarkeit, wie im Falle von reinem MgO mit zunehmender Dichte, behindern. Eine Analyse der Dispersion des Brechungsindexes von MgO (Abnahme um ~23 % von 1 Atm zu ~103 GPa) offenbart eine Verbreiterung der Bandlücke von ~7.4 eV bei 1 Atm zu ~8.5 (±0.6) eV bei ~103 GPa. Die Messung der Dispersion (zwischen 550 und 870 nm) in Fp13 zeigt eine starke Abnahme über den Bereich des Spin-Überganges (~44–100 GPa) bis zu einem Faktor von ~3. Die Bandlücke nimmt in der Region des gemischten Spin-Zustandes signifikant auf bis zu ~4.7 eV zu (entspricht einer Zunahme um den Faktor ~1.7). Dies deutet auf eine Verringerung der Elektronen-Mobilität zwischen benachbarten Fe2+-Positionen mit unterschiedlichem Spin-Zustand hin, was die bereits in früheren Arbeiten beobachtete Abnahme der elektrischen Leitfähigkeit im Bereich des gemischten Spin-Zustandes erklärt. Absorptionsspektren an Fp13 zeigen eine Druck-bedingte Zunahme der Kovalenz der Fe-O Bindung für Ferroperiklas im Hoch-Spin Zustand, wohingegen Tief-Spin Ferroperiklas einen Trend zu einer mehr ionischen Fe-O Bindung auf-weist, was auf einen Bindungs-schwächenden Effekt des Spin-Wechsels hinweist. Der Übergang von Hoch- zu Tiefspin ist letztlich auf eine Zunahme der Ligandenfeldaufspaltungsenergie sowie eine abnehmende Spinpaarungsenergie von Hoch-Spin Fe2+ zurückzuführen. KW - optical properties KW - optische Eigenschaften KW - high pressure KW - Hochdruck KW - earth mantle KW - Erdmantel KW - diamond anvil cell KW - Diamantstempelzelle KW - ferropericlase KW - Ferroperiklas KW - spectroscopy KW - Spektroskopie Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-622166 ER - TY - THES A1 - Biedermann, Nicole T1 - Carbonate-silicate reactions at conditions of the Earth’s mantle and the role of carbonates as possible trace-element carriers N2 - Carbonates play a key role in the chemistry and dynamics of our planet. They are directly connected to the CO2 budget of our atmosphere and have a great impact on the deep carbon cycle. Moreover, recent studies have shown that carbonates are stable along the geothermal gradient down to Earth's lower mantle conditions, changing their crystal structure and related properties. Subducted carbonates may also react with silicates to form new phases. These reactions will redistribute elements, such as calcium (Ca), magnesium (Mg), iron (Fe) and carbon in the form of carbon dioxide (CO2), but also trace elements, that are carried by the carbonates. The trace elements of most interest are strontium (Sr) and rare earth elements (REE) which have been found to be important constituents in the composition of the primitive lower mantle and in mineral inclusions found in super-deep diamonds. However, the stability of carbonates in presence of mantle silicates at relevant temperatures is far from being well understood. Related to this, very little is known about distribution processes of trace elements between carbonates and mantle silicates. To shed light on these processes, we studied reactions between Sr- and REE-containing CaCO3 and Mg/Fe-bearing silicates of the system (Mg,Fe)2SiO4 - (Mg,Fe)SiO3 at high pressure and high temperature using synchrotron radiation based μ-X-ray diffraction (μ-XRD) and μ-X-ray fluorescence (μ-XRF) with μm-resolution in a laser-heated diamond anvil cell. X-ray diffraction is used to derive the structural changes of the phase reactions whereas X-ray fluorescence gives information on the chemical changes in the sample. In-situ experiments at high pressure and high temperature were performed at beamline P02.2 at PETRA III (Hamburg, Germany) and at beamline ID27 at ESRF (Grenoble, France). In addition to μ-XRD and μ-XRF, ex-situ measurements were made on the recovered sample material using transmission electron microscopy (TEM) and provided further insights into the reaction kinetics of carbonate-silicate reactions. Our investigations show that CaCO3 is unstable in presence of mantle silicates above 1700 K and a reaction takes place in which magnesite plus CaSiO3-perovskite are formed. In addition, we observed that a high content of iron in the carbonate-silicate system favours dolomite formation during the reaction. The subduction of natural carbonates with significant amounts of Sr leads to a comprehensive investigation of the stability not only of CaCO3 phases in contact with mantle silicates but also of SrCO3 (and of Sr-bearing CaCO3). We found that SrCO3 reacts with (Mg,Fe)SiO3-perovskite to form magnesite and gained evidence for the formation of SrSiO3-perovskite. To complement our study on the stability of SrCO3 at conditions of the Earth's lower mantle, we performed powder X-ray diffraction and single crystal X-ray diffraction experiments at ambient temperature and up to 49 GPa. We observed a transformation from SrCO3-I into a new high-pressure phase SrCO3-II at around 26 GPa with Pmmn crystal structure and a bulk modulus of 103(10) GPa. This information is essential to fully understand the phase behaviour and stability of carbonates in the Earth's lower mantle and to elucidate the possibility of introducing Sr into mantle silicates by carbonate-silicate reactions. Simultaneous recording of μ-XRD and μ-XRF in the μm-range over the heated areas provides spatial information not only about phase reactions but also on the elemental redistribution during the reactions. A comparison of the spatial intensity distribution of the XRF signal before and after heating indicates a change in the elemental distribution of Sr and an increase in Sr-concentration was found around the newly formed SrSiO3-perovskite. With the help of additional TEM analyses on the quenched sample material the elemental redistribution was studied at a sub-micrometer scale. Contrary to expectations from combined μ-XRD and μ-XRF measurements, we found that La and Eu were not incorporated into the silicate phases, instead they tend to form either isolated oxide phases (e.g. Eu2O3, La2O3) or hydroxyl-bastnäsite (La(CO3)(OH)). In addition, we observed the transformation from (Mg,Fe)SiO3-perovskite to low-pressure clinoenstatite during pressure release. The monoclinic structure (P21/c) of this phase allows the incorporation of Ca as shown by additional EDX analyses and, to a minor extent, Sr too. Based on our experiments, we can conclude that a detection of the trace elements in-situ at high pressure and high temperature remains challenging. However, our first findings imply that silicates may incorporate the trace elements provided by the carbonates and indicate that carbonates may have a major effect on the trace element contents of mantle phases. N2 - Karbonate spielen eine wesentliche Rolle in der Chemie und Dynamik unseres Planeten. Sie stehen im direkten Zusammenhang mit dem CO2-Haushalt unserer Atmosphäre und dem tiefen, erdinneren Kohlenstoff-Kreislauf. Darüber hinaus haben jüngste Studien gezeigt, dass subduzierte Karbonate entlang des geothermischen Gradienten bis hinunter zu unteren Erdmantelbedingungen stabil sind, wobei sich ihre Kristallstruktur und die damit verbundenen Eigenschaften ändern. Ebenso können subduzierte Karbonate mit Mantelsilikaten reagieren. Diese Reaktionen führen zu einer Umverteilung von Elementen, welche von den subduzierten Karbonaten hinunter in die Tiefen der Erde transportiert werden. Die Elemente, um die es sich hauptsächlich handelt, sind dabei Calcium (Ca), Magnesium (Mg), Eisen (Fe) und Kohlenstoff (C). Aber auch Spurenelemente, wie beispielsweise Strontium (Sr) und Seltene Erdelemente (REE), können über Karbonate in den unteren Erdmantelbereich gelangen. Die Stabilität der Karbonate in Gegenwart von Mantelsilikaten bei relevanten Erdmantelbedingungen ist jedoch bei Weitem nicht bekannt. Ebenso ist nur sehr wenig über die Verteilungsprozesse von Spurenelementen zwischen Karbonaten und Mantelsilikaten bekannt. Um diese Prozesse zu beleuchten, wurden Reaktionen zwischen Sr- und REE-haltigem CaCO3 und Mg/Fe-haltigen Silikaten aus dem System (Mg,Fe)2SiO4 - (Mg,Fe)SiO3 unter hohem Druck und hoher Temperatur mit μm-aufgelöster Röntgenbeugung (μ-XRD) und Röntgenfluoreszenz (μ-XRF) in einer lasergeheizten Diamantstempelzelle durchgeführt. Dabei wird Röntgenbeugung verwendet, um die strukturellen Änderungen der Phasenreaktionen abzuleiten, während Röntgenfluoreszenz Informationen über die chemischen Änderungen in der Probe liefert. Unsere Untersuchungen zeigen, dass sowohl SrCO3 als auch CaCO3 in Gegenwart von Mantelsilikaten bei über 1700 K instabil sind und eine Reaktion stattfindet, bei der Magnesit und CaSiO3-Perowskit bzw. SrSiO3-Perowskit gebildet werden. Ein Vergleich der räumlichen Intensitätsverteilungen von XRF Signalen vor und nach dem Heizen zeigt eine Änderung in der Elementverteilung von Sr und eine Zunahme der Sr-Konzentration um den neugebildeten SrSiO3-Perowskit. Zusätzliche Aufnahmen am zurückgewonnenen, abgeschreckten Probenmaterial mittels Transmissionselektronenmikroskopie (TEM) lieferten weitere Erkenntnisse zur Reaktionskinetik. Entgegen den Erwartungen eines Einbaus der Seltenen Erdelemente in die neugebildeten Mantelsilikate, haben wir aus kombinierten μ-XRD-, μ-XRF- und TEM-Messungen festgestellt, dass La und Eu entweder isolierte Oxidphasen (Eu2O3, La2O3) oder Hydroxyl-Bastnäsit (La(CO3)(OH)) bilden. Zusätzlich war zu beobachten, dass (Mg,Fe)SiO3-Perowskit sich während der Druckentlastung in Clinoenstatit umgewandelt hat. Die monokline Struktur dieser Phase ermöglicht den Einbau von Ca und, im geringerem Maße, Sr, wie durch zusätzliche EDX-Analysen gezeigt wurde. Ergänzend zu unserer Studie führten wir Pulver-Röntgenbeugung in Kombination mit Einkristall-Röntgenbeugung bei Umgebungstemperatur und bis zu 49 GPa am Endglied Strontianit (SrCO3) durch. Wir beobachteten eine Umwandlung von SrCO3-I in eine neue Hochdruckphase SrCO3-II bei etwa 26 GPa mit Pmmn-Kristallstruktur und einem Kompressionsmodul von 103(10) GPa. Solche Informationen sind sehr wichtig, da sie Aufschlüsse sowohl über das Phasenverhalten als auch über die Stabilität von Karbonaten in Gegenwart von Mantelsilikaten geben und helfen, sie vollständig zu verstehen. Basierend auf den Erkenntnissen aus unseren Experimenten können wir schließen, dass ein Nachweis von Spurenelementen in-situ unter hohem Druck und hoher Temperatur eine Herausforderung bleibt. Unsere Ergebnisse deuten jedoch darauf hin, dass Silikate die Spurenelemente, welche von den Karbonaten transportiert werden, aufnehmen können und demzufolge Karbonate einen wesentlichen Einfluss auf den Spurenelementgehalt von Mantelphasen haben. T2 - Karbonat-Silikat-Reaktionen bei Erdmantelbedingungen und die Rolle der Karbonate als mögliche Spurenelementträger KW - laser-heated Diamond Anvil Cell KW - Carbonate-Silicate reactions KW - Earth's mantle KW - Karbonat-Silikat-Reaktionen KW - Erdmantel KW - laser-geheizte Diamantstempelzelle Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-482772 ER - TY - THES A1 - Mulyukova, Elvira T1 - Stability of the large low shear velocity provinces T1 - Stabilität der basalen Melange im untersten Erdmantel BT - numerical modeling of thermochemical mantle convection BT - numerische Modellierung thermochemischer Mantelkonvektion N2 - We study segregation of the subducted oceanic crust (OC) at the core mantle boundary and its ability to accumulate and form large thermochemical piles (such as the seismically observed Large Low Shear Velocity Provinces - LLSVPs). Our high-resolution numerical simulations suggest that the longevity of LLSVPs for up to three billion years, and possibly longer, can be ensured by a balance in the rate of segregation of high-density OC-material to the CMB, and the rate of its entrainment away from the CMB by mantle upwellings. For a range of parameters tested in this study, a large-scale compositional anomaly forms at the CMB, similar in shape and size to the LLSVPs. Neutrally buoyant thermochemical piles formed by mechanical stirring - where thermally induced negative density anomaly is balanced by the presence of a fraction of dense anomalous material - best resemble the geometry of LLSVPs. Such neutrally buoyant piles tend to emerge and survive for at least 3Gyr in simulations with quite different parameters. We conclude that for a plausible range of values of density anomaly of OC material in the lower mantle - it is likely that it segregates to the CMB, gets mechanically mixed with the ambient material, and forms neutrally buoyant large scale compositional anomalies similar in shape to the LLSVPs. We have developed an efficient FEM code with dynamically adaptive time and space resolution, and marker-in-cell methodology. This enabled us to model thermochemical mantle convection at realistically high convective vigor, strong thermally induced viscosity variations, and long term evolution of compositional fields. N2 - Es wird allgemein akzeptiert, dass Mantelkonvektion - das langsame Fließen der Mantelgesteine, das mutmaßlich ein wichtiger Antrieb der Plattentektonik ist - von Dichteunterschieden verursacht wird, die thermischen aber auch chemischen Ursprungs sind. Es fehlen aber Kenntnisse über die thermochemischen Prozesse im Erdinneren, vor allem wegen Schwierigkeiten bei der Beobachtung. Eines der zuverlässigsten Resultate von tomographischen Beobachtungen ist die Existenz von zwei Haufen einer basalen Melange (BAM, LLSVP auf Englisch), die sich auf gegenüber liegenden Seiten in 3000 km Tiefe am Boden des Mantels unter Afrika bzw dem Pazifik befinden. Die niedrige Scherwellengeschwindigkeit in der BAM scheint eine thermischen (heiß) sowie einen chemischen (Material mit hoher Dichte) Ursprung zu haben. Aufgrund von plattentektonischen Rekonstruktionen wird angenommen dass die BAM langlebig und stabil sind, und dass sie von überwiegend von ihren Rändern hochquellenden Manteldiapiren beprobt werden. Die Hauptfrage meiner Doktorarbeit ist, wie solche großen chemischen Speicher wie die BAM sich bilden und über hunderte von Millionen Jahren überleben können, ohne dass sie von der Mantelkonvektion zerstört werden. Was sind die physikalischen Eigenschaften des BAM-Materials, z.B. Dichte, die dazu beitragen? Ich benutze numerische Modellierung um zu erforschen, wie sich eine dichte Bodenschicht bildet und wie die Mantelkonvektion Material daraus mitnimmt. Mein Ziel ist, die langfristige thermochemische Entwicklung des Erdmantels zu verstehen, insbesondere die Rolle der Dichteheterogeintäten Viskosität im untersten Mantel. KW - earth's mantle KW - thermochemical mantle convection KW - numerical modeling KW - Erdmantel KW - thermochemischer Mantelkonvektion KW - numerische Modellierung Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-82228 ER - TY - THES A1 - Budweg, Martin T1 - Der obere Mantel in der Eifel-Region untersucht mit der Receiver Function Methode T1 - The upper mantle in the region of the Eifel, Germany, analyzed with the receiver function method N2 - Die Eifel ist eines der jüngsten vulkanischen Gebiete Mitteleuropas. Die letzte Eruption ereignete sich vor ungefähr 11000 Jahren. Bisher ist relativ wenig bekannt über die tieferen Mechanismen, die für den Vulkanismus in der Eifel verantwortlich sind. Erdbebenaktivität deutet ebenso darauf hin, dass die Eifel eines der geodynamisch aktivsten Gebiete Mitteleuropas ist. In dieser Arbeit wird die Receiver Function Methode verwendet, um die Strukturen des oberen Mantels zu untersuchen. 96 teleseismische Beben (mb > 5.2) wurden ausgewertet, welche von permanenten und mobilen breitbandigen und kurzperiodischen Stationen aufgezeichnet wurden. Das temporäre Netzwerk registrierte von November 1997 bis Juni 1998 und überdeckte eine Fläche von ungefähr 400x250 km². Das Zentrum des Netzwerkes befand sich in der Vulkaneifel. Die Auswertung der Receiver Function Analyse ergab klare Konversionen von der Moho und den beiden Manteldiskontinuitäten in 410 km und 660 km Tiefe, sowie Hinweise auf einen Mantel-Plume in der Region der Eifel. Die Moho wurde bei ungefähr 30 km Tiefe beobachtet und zeigt nur geringe Variationen im Bereich des Netzwerkes. Die beobachteten Variationen der konvertierten Phasen der Moho können mit lateralen Schwankungen in der Kruste zu tun haben, die mit den Receiver Functions nicht aufgelöst werden können. Die Ergebnisse der Receiver Function Methode deuten auf eine Niedriggeschwindigkeitszone zwischen 60 km bis 90 km in der westlichen Eifel hin. In etwa 200 km Tiefe werden im Bereich der Eifel amplitudenstarke positive Phasen von Konversionen beobachtet. Als Ursache hierfür wird eine Hochgeschwindigkeitszone vorgeschlagen, welche durch mögliches aufsteigendes, dehydrierendes Mantel-Material verursacht wird. Die P zu S Konversionen an der 410 km Diskontinuität zeigen einen späteren Einsatz als nach dem IASP91-Modell erwartet wird. Die migrierten Daten weisen eine Absenkung der 410 km Diskontinuität um bis zu 20 km Tiefe auf, was einer Erhöhung der Temperatur von bis zu etwa 140° Celsius entspricht. Die 660 km Diskontinuität weist keine Aufwölbung auf. Dies deutet darauf hin, dass kein Mantelmaterial direkt von unterhalb der 660 km Diskontinuität in der Eifel-Region aufsteigt oder, dass der Ursprung des Eifel-Plumes innerhalb der Übergangszone liegt. N2 - The upper mantle in the region of the Eifel, Germany, analyzed with the receiver function method: The Eifel is the youngest volcanic area of Central Europe. The last eruption occurred approximately 11000 years ago. Little is known about the deep origin and the mechanism responsible for the Eifel volcanic activity. Earthquake activity indicates that the Eifel is one of the most geodynamically active areas of Central Europe. In this work the receiver function method is used to investigate the upper mantle structure beneath the Eifel. Data from 96 teleseismic events (mb > 5.2) that were recorded by both permanent stations and a temporary network of 33 broadband and 129 short period stations had been analyzed. The temporary network was operating from November 1997 till June 1998 and covered an area of approximately 400x250 km² centered on the Eifel volcanic fields. The receiver function analysis reveals a clear image of the Moho and the mantle discontinuities at 410 km and 660 km depth. Average Moho depth is approximately 30 km and it shows little variation over the extent of the network. The observed variations of converted waveforms are possibly caused by lateral variations in crustal structure, which could not resolved by it receiver functions. Inversions of data and migrated it receiver functions from stations of the central Eifel array suggest that a low velocity zone is present at about 60 to 90 km depth in the western Eifel region. There are also indications for a high velocity zone around 200 km depth, perhaps caused by dehydration of the rising plume material. The results suggest that P-to-S conversions from the 410-km discontinuity arrive later than in the IASP91 reference model. The migrated data show a depression of the 410 km discontinuity of about 20 km, which correspond to an increase of temperature of about 140° Celsius. The 660 km discontinuity seems to be unaffected. This indicates that no mantel material rises up from directly below the 660 km discontinuity in the Eifel region or the Eifel-Plume has its origin within the transition zone. KW - Seismologie KW - Receiver Function KW - Hotspot KW - Erdmantel KW - Eifel KW - Seismology KW - Receiver Function KW - Hotspot KW - Mantle KW - Eifel Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0000704 ER -