TY - JOUR A1 - Robert, Helene S. A1 - Grunewald, Wim A1 - Sauer, Michael A1 - Cannoot, Bernard A1 - Soriano, Mercedes A1 - Swarup, Ranjan A1 - Weijers, Dolf A1 - Bennett, Malcolm A1 - Boutilier, Kim A1 - Friml, Jiri T1 - Plant embryogenesis requires AUX/LAX-mediated auxin influx JF - Development : Company of Biologists N2 - The plant hormone auxin and its directional transport are known to play a crucial role in defining the embryonic axis and subsequent development of the body plan. Although the role of PIN auxin efflux transporters has been clearly assigned during embryonic shoot and root specification, the role of the auxin influx carriers AUX1 and LIKE-AUX1 (LAX) proteins is not well established. Here, we used chemical and genetic tools on Brassica napus microspore-derived embryos and Arabidopsis thaliana zygotic embryos, and demonstrate that AUX1, LAX1 and LAX2 are required for both shoot and root pole formation, in concert with PIN efflux carriers. Furthermore, we uncovered a positive-feedback loop between MONOPTEROS-(ARF5)dependent auxin signalling and auxin transport. This MONOPTEROS dependent transcriptional regulation of auxin influx (AUX1, LAX1 and LAX2) and auxin efflux (PIN1 and PIN4) carriers by MONOPTEROS helps to maintain proper auxin transport to the root tip. These results indicate that auxin-dependent cell specification during embryo development requires balanced auxin transport involving both influx and efflux mechanisms, and that this transport is maintained by a positive transcriptional feedback on auxin signalling. KW - Arabidopsis thaliana embryogenesis KW - Auxin transport KW - AUX1 KW - LIKE-AUX1 (LAX) KW - MONOPTEROS (ARF5) KW - PIN KW - Brassica napus KW - Microspore Y1 - 2015 U6 - https://doi.org/10.1242/dev.115832 SN - 0950-1991 SN - 1477-9129 VL - 142 IS - 4 SP - 702 EP - 711 PB - Company of Biologists Limited CY - Cambridge ER - TY - JOUR A1 - Köslin-Findeklee, Fabian A1 - Rizi, Vajiheh Safavi A1 - Becker, Martin A. A1 - Parra-Londono, Sebastian A1 - Arif, Muhammad A1 - Balazadeh, Salma A1 - Müller-Röber, Bernd A1 - Kunze, Reinhard A1 - Horst, Walter J. T1 - Transcriptomic analysis of nitrogen starvation- and cultivar-specific leaf senescence in winter oilseed rape (Brassica napus L.) JF - Plant science : an international journal of experimental plant biology N2 - High nitrogen (N) efficiency, characterized by high grain yield under N limitation, is an important agricultural trait in Brassica napus L. cultivars related to delayed senescence of older leaves during reproductive growth (a syndrome called stay-green). The aim of this study was thus to identify genes whose expression is specifically altered during N starvation-induced leaf senescence and that can be used as markers to distinguish cultivars at early stages of senescence prior to chlorophyll loss. To this end, the transcriptomes of leaves of two B. napus cultivars differing in stay-green characteristics and N efficiency were analyzed 4 days after the induction of senescence by either N starvation, leaf shading or detaching. In addition to N metabolism genes, N starvation mostly (and specifically) repressed genes related to photosynthesis, photorespiration and cell-wall structure, while genes related to mitochondrial electron transport and flavonoid biosynthesis were predominately up-regulated. A kinetic study over a period of 12 days with four B. napus cultivars differing in their stay-green characteristics confirmed the cultivar-specific regulation of six genes in agreement with their senescence behavior: the senescence regulator ANAC029, the anthocyanin synthesis-related genes ANS and DFR-like1, the ammonium transporter AMT1:4, the ureide transporter UPSS, and SPS1 involved in sucrose biosynthesis. The identified genes represent markers for the detection of cultivar-specific differences in N starvation-induced leaf senescence and can thus be employed as valuable tools in B. napus breeding. (C) 2015 Elsevier Ireland Ltd. All rights reserved. KW - Brassica napus KW - Genotypic differences KW - Leaf senescence KW - Molecular marker KW - N efficiency KW - Stay-green Y1 - 2015 U6 - https://doi.org/10.1016/j.plantsci.2014.11.018 SN - 0168-9452 VL - 233 SP - 174 EP - 185 PB - Elsevier CY - Clare ER -