TY - JOUR A1 - Krumbholz, Julia A1 - Ishida, Keishi A1 - Baunach, Martin A1 - Teikari, Jonna A1 - Rose, Magdalena M. A1 - Sasso, Severin A1 - Hertweck, Christian A1 - Dittmann, Elke T1 - Deciphering chemical mediators regulating specialized metabolism in a symbiotic cyanobacterium JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker. International edition N2 - Genomes of cyanobacteria feature a variety of cryptic biosynthetic pathways for complex natural products, but the peculiarities limiting the discovery and exploitation of the metabolic dark matter are not well understood. Here we describe the discovery of two cell density-dependent chemical mediators, nostoclide and nostovalerolactone, in the symbiotic model strain Nostoc punctiforme, and demonstrate their pronounced impact on the regulation of specialized metabolism. Through transcriptional, bioinformatic and labeling studies we assigned two adjacent biosynthetic gene clusters to the biosynthesis of the two polyketide mediators. Our findings provide insight into the orchestration of specialized metabolite production and give lessons for the genomic mining and high-titer production of cyanobacterial bioactive compounds. KW - Biosynthesis KW - Cyanobacteria KW - Genomic Mining KW - Quorum Sensing KW - Specialized KW - Metabolism Y1 - 2022 U6 - https://doi.org/10.1002/anie.202204545 SN - 1433-7851 SN - 1521-3773 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Pearson, Leanne A. A1 - Dittmann, Elke A1 - Mazmouz, Rabia A1 - Ongley, Sarah E. A1 - Neilan, Brett A. T1 - The genetics, biosynthesis and regulation of toxic specialized metabolites of cyanobacteria JF - Harmful algae N2 - The production of toxic metabolites by cyanobacterial blooms represents a significant threat to the health of humans and ecosystems worldwide. Here we summarize the current state of the knowledge regarding the genetics, biosynthesis and regulation of well-characterized cyanotoxins, including the microcystins, nodularin, cylindrospermopsin, saxitoxins and antitoxins, as well as the lesser-known marine toxins (e.g. lyngbyatoxin, aplysiatoxin, jamaicamides, barbamide, curacin, hectochlorin and apratoxins). (C) 2015 Elsevier B.V. All rights reserved. KW - Cyanobacteria KW - Cyanotoxins KW - Specialized metabolites KW - Genetics KW - Biosynthesis KW - Regulation Y1 - 2016 U6 - https://doi.org/10.1016/j.hal.2015.11.002 SN - 1568-9883 SN - 1878-1470 VL - 54 SP - 98 EP - 111 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Yang, Ziyin A1 - Baldermann, Susanne A1 - Watanabe, Naoharu T1 - Recent studies of the volatile compounds in tea JF - FOOD RESEARCH INTERNATIONAL N2 - Tea aroma is one of the most important factors affecting the character and quality of tea. Recent advances in methods and instruments for separating and identifying volatile compounds have led to intensive investigations of volatile compounds in tea. These studies have resulted in a number of insightful and useful discoveries. Here we summarize the recent investigations into tea volatile compounds: the volatile compounds in tea products; the metabolic pathways of volatile formation in tea plants and the glycosidically-bound volatile compounds in tea; and the techniques used for studying such compounds. Finally, we discuss practical applications for the improvement of aroma and flavor quality in teas. (C) 2013 Elsevier Ltd. All rights reserved. KW - Biosynthesis KW - Precursor KW - Stress KW - Tea KW - Volatile Y1 - 2013 U6 - https://doi.org/10.1016/j.foodres.2013.02.011 SN - 0963-9969 VL - 53 IS - 2 SP - 585 EP - 599 PB - ELSEVIER SCIENCE BV CY - AMSTERDAM ER - TY - GEN A1 - Ferenz, Hans-Jürgen A1 - Peter, Martin G. A1 - Berg, Dieter T1 - Inhibition of farnesoic acid methyltransferase by sinefungin N2 - Sinefungin inhibited the S-adenosylmethionine-dependent farnesoic acid methyltransferase in a cell-free system containing a homogenate of corpora allata from female locusts, Locusta migratoria. The enzyme catalyzed the penultimate step of juvenile hormone biosynthesis in the insects. Culturing corpora allata in the presence of sinefungin greatly suppressed juvenile hormone production. The following in vivo effects were visible after injection of the inhibitor: increase in mortality and reduction of total haemolymph protein liter and ovary fresh weight, as well as length of terminal oocytes. Attempts to reverse these effects by topical application of the juvenile hormone analog ZR-515 (methoprene) were only partly successful. Therefore, the in vivo effects may be due to a general inhibition of methyltransferase enzymes in the insect. Sinefungin appeared to be of potential interest as the first representative of a new class of insect growth regulators. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 077 KW - Juvenile hormone analogue KW - Orthoptera KW - Juvenile hormone KW - Biosynthesis KW - Enzyme KW - Corpora allata KW - In vitro KW - Biological activity KW - Enzyme inhibitor Y1 - 1983 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-17016 ER -