TY - JOUR A1 - Nitze, Ingmar A1 - Grosse, Guido T1 - Detection of landscape dynamics in the Arctic Lena Delta with temporally dense Landsat time-series stacks JF - Remote sensing of environment : an interdisciplinary journal N2 - Arctic permafrost landscapes are among the most vulnerable and dynamic landscapes globally, but due to their extent and remoteness most of the landscape changes remain unnoticed. In order to detect disturbances in these areas we developed an automated processing chain for the calculation and analysis of robust trends of key land surface indicators based on the full record of available Landsat TM, ETM +, and OLI data. The methodology was applied to the similar to 29,000 km(2) Lena Delta in Northeast Siberia, where robust trend parameters (slope, confidence intervals of the slope, and intercept) were calculated for Tasseled Cap Greenness, Wetness and Brightness, NDVI, and NDWI, and NDMI based on 204 Landsat scenes for the observation period between 1999 and 2014. The resulting datasets revealed regional greening trends within the Lena Delta with several localized hot-spots of change, particularly in the vicinity of the main river channels. With a 30-m spatial resolution various permafrost-thaw related processes and disturbances, such as thermokarst lake expansion and drainage, fluvial erosion, and coastal changes were detected within the Lena Delta region, many of which have not been noticed or described before. Such hotspots of permafrost change exhibit significantly different trend parameters compared to non-disturbed areas. The processed dataset, which is made freely available through the data archive PANGAEA, will be a useful resource for further process specific analysis by researchers and land managers. With the high level of automation and the use of the freely available Landsat archive data, the workflow is scalable and transferrable to other regions, which should enable the comparison of land surface changes in different permafrost affected regions and help to understand and quantify permafrost landscape dynamics. (C) 2016 Elsevier Inc. All rights reserved. KW - Trend analysis KW - Permafrost thaw KW - Thermokarst KW - Thermoerosion KW - Land cover disturbances KW - River delta KW - Arctic tundra KW - Vegetation greening KW - Vegetation change KW - Coastal dynamics KW - Siberia Y1 - 2016 U6 - https://doi.org/10.1016/j.rse.2016.03.038 SN - 0034-4257 SN - 1879-0704 VL - 181 SP - 27 EP - 41 PB - Elsevier CY - New York ER - TY - THES A1 - Buchhorn, Marcel T1 - Ground-based hyperspectral and spectro-directional reflectance characterization of Arctic tundra vegetation communities : field spectroscopy and field spectro-goniometry of Siberian and Alaskan tundra in preparation of the EnMAP satellite mission T1 - Bodengestützte Hyperspektrale und Spektro-Direktionale Reflektanz-Charakterisierung von Vegetationsgesellschaften der arktischen Tundra : Geländespektrometrie und Geländespektro-Goniometrie von Tundra in Sibirien und Alaska in Vorbereitung auf die EnMAP Satellitenmission N2 - The Arctic tundra, covering approx. 5.5 % of the Earth’s land surface, is one of the last ecosystems remaining closest to its untouched condition. Remote sensing is able to provide information at regular time intervals and large spatial scales on the structure and function of Arctic ecosystems. But almost all natural surfaces reveal individual anisotropic reflectance behaviors, which can be described by the bidirectional reflectance distribution function (BRDF). This effect can cause significant changes in the measured surface reflectance depending on solar illumination and sensor viewing geometries. The aim of this thesis is the hyperspectral and spectro-directional reflectance characterization of important Arctic tundra vegetation communities at representative Siberian and Alaskan tundra sites as basis for the extraction of vegetation parameters, and the normalization of BRDF effects in off-nadir and multi-temporal remote sensing data. Moreover, in preparation for the upcoming German EnMAP (Environmental Mapping and Analysis Program) satellite mission, the understanding of BRDF effects in Arctic tundra is essential for the retrieval of high quality, consistent and therefore comparable datasets. The research in this doctoral thesis is based on field spectroscopic and field spectro-goniometric investigations of representative Siberian and Alaskan measurement grids. The first objective of this thesis was the development of a lightweight, transportable, and easily managed field spectro-goniometer system which nevertheless provides reliable spectro-directional data. I developed the Manual Transportable Instrument platform for ground-based Spectro-directional observations (ManTIS). The outcome of the field spectro-radiometrical measurements at the Low Arctic study sites along important environmental gradients (regional climate, soil pH, toposequence, and soil moisture) show that the different plant communities can be distinguished by their nadir-view reflectance spectra. The results especially reveal separation possibilities between the different tundra vegetation communities in the visible (VIS) blue and red wavelength regions. Additionally, the near-infrared (NIR) shoulder and NIR reflectance plateau, despite their relatively low values due to the low structure of tundra vegetation, are still valuable information sources and can separate communities according to their biomass and vegetation structure. In general, all different tundra plant communities show: (i) low maximum NIR reflectance; (ii) a weakly or nonexistent visible green reflectance peak in the VIS spectrum; (iii) a narrow “red-edge” region between the red and NIR wavelength regions; and (iv) no distinct NIR reflectance plateau. These common nadir-view reflectance characteristics are essential for the understanding of the variability of BRDF effects in Arctic tundra. None of the analyzed tundra communities showed an even closely isotropic reflectance behavior. In general, tundra vegetation communities: (i) usually show the highest BRDF effects in the solar principal plane; (ii) usually show the reflectance maximum in the backward viewing directions, and the reflectance minimum in the nadir to forward viewing directions; (iii) usually have a higher degree of reflectance anisotropy in the VIS wavelength region than in the NIR wavelength region; and (iv) show a more bowl-shaped reflectance distribution in longer wavelength bands (>700 nm). The results of the analysis of the influence of high sun zenith angles on the reflectance anisotropy show that with increasing sun zenith angles, the reflectance anisotropy changes to azimuthally symmetrical, bowl-shaped reflectance distributions with the lowest reflectance values in the nadir view position. The spectro-directional analyses also show that remote sensing products such as the NDVI or relative absorption depth products are strongly influenced by BRDF effects, and that the anisotropic characteristics of the remote sensing products can significantly differ from the observed BRDF effects in the original reflectance data. But the results further show that the NDVI can minimize view angle effects relative to the contrary spectro-directional effects in the red and NIR bands. For the researched tundra plant communities, the overall difference of the off-nadir NDVI values compared to the nadir value increases with increasing sensor viewing angles, but on average never exceeds 10 %. In conclusion, this study shows that changes in the illumination-target-viewing geometry directly lead to an altering of the reflectance spectra of Arctic tundra communities according to their object-specific BRDFs. Since the different tundra communities show only small, but nonetheless significant differences in the surface reflectance, it is important to include spectro-directional reflectance characteristics in the algorithm development for remote sensing products. N2 - Die arktische Tundra ist mit circa 5,5 % der Landoberfläche eines der letzten großen verbliebenen fast unberührten Ökosysteme unserer Erde. Nur die Fernerkundung ist in der Lage, benötigte Informationen über Struktur und Zustand dieses Ökosystems großräumig und in regelmäßigen Zeitabständen zur Verfügung zu stellen. Aber fast alle natürlichen Oberflächen zeigen individuelle anisotrope Reflexionsverhaltensweisen, welche durch die bidirektionale Reflektanzverteilungsfunktion (englisch: BRDF) beschrieben werden können. Dieser Effekt kann zu erheblichen Veränderungen im gemessenen Reflexionsgrad der Oberfläche in Abhängigkeit von den solaren Beleuchtung- und Blickrichtungsgeometrien führen. Zielstellung dieser Arbeit ist die hyperspektrale und spektro-direktionale Charakterisierung der Oberflächenreflexion wichtiger und repräsentativer arktischer Pflanzengesellschaften in Sibirien und Alaska, als Grundlage für die Extraktion von Vegetationsparametern und die Normalisierung von BRDF-Effekten in Off-Nadir und multi-temporalen Fernerkundungsdaten. In Vorbereitung auf die bevorstehende nationale EnMAP Satellitenmission ist ein Grundverständnis der BRDF-Effekte in der arktischen Tundra von wesentlicher Bedeutung für die Erstellung von hochqualitativen, konsistenten und damit vergleichbaren Datensätzen. Die in dieser Arbeit genutzten Daten beruhen auf geländespektroskopische und geländespektro-goniometrische Untersuchungen von repräsentativen Messflächen in Sibirien und Alaska. Die Entwicklung eines leichten, transportablen und einfach anzuwendenden Geländespektro-Goniometers, welches dennoch zuverlässig Daten liefert, war die erste Aufgabe. Hierfür habe ich ein Gerät mit der Bezeichnung ManTIS („Manual Transportable Instrument platform for ground-based Spectro-directional observations“) entwickelt. Die Ergebnisse der geländespektro-radiometrischen Messungen entlang wichtiger ökologischer Gradienten (regionales Klima, pH-Wert des Bodens, Bodenfeuchte, Toposequenz) zeigen, dass die Pflanzengesellschaften sich anhand ihrer Nadir-Reflektanzen unterscheiden lassen. Insbesondere die Möglichkeit der Differenzierung im sichtbaren (VIS) blauen und roten Wellenlängenbereich. Die Nah-Infrarot (NIR) Schulter und das NIR-Reflektanzplateau sind trotz ihrer niedrigeren Reflektanzwerte eine wertvolle Informationsquelle, die genutzt werden kann um die Pflanzengesellschaften entsprechend ihrer Biomasse und der Vegetationsstruktur voneinander zu unterscheiden. Im Allgemeinen zeigen die verschiedenen Pflanzengesellschaften der Tundra: (i) eine niedrige maximale NIR-Reflektanz; (ii) ein schwaches oder nicht sichtbares lokales Reflektanzmaximum im grünen VIS-Spektrum; (iii) einen schmalen „red-edge“ Bereich zwischen dem roten und NIR-Wellenlängenbereich und (iv) kein deutliches NIR-Reflektanzplateau. Diese gemeinsamen Nadir-Reflektanzeigenschaften sind entscheidend für das Verständnis der Variabilität der BRDF-Effekte in der arktischen Tundra. Keine der untersuchten Pflanzengesellschaften wies isotrope Reflektanzeigenschaften auf. Im Allgemeinen zeigt Tundravegetation: (i) die höchsten BRDF-Effekte in der solaren Hauptebene; (ii) die maximalen Reflexionsgrade in den rückwärts gerichteten Blickrichtungen; (iii) höhere Grade an Anisotropie im VIS-Spektrum als im NIR-Spektrum und (iv) schüsselförmige Reflexionsgradverteilungen in den längeren Wellenlängenbereichen (>700 nm). Die Analyse des Einflusses von hohen Sonnenzenitwinkeln auf die Anisotropie der Rückstrahlung zeigt, dass sich mit zunehmenden Sonnenzenitwinkeln die Anisotropie-Eigenschaften in azimutal-symmetrische schüsselförmige Reflexionsgradverteilungen ändern. Auch ergeben die spektro-direktionalen Analysen, dass Fernerkundungsprodukte wie der NDVI oder die relative Absorptionstiefe stark von BRDF-Effekten beeinflusst werden. Die anisotropen Eigenschaften der Fernerkundungsprodukte können sich erheblich von den beobachteten BRDF-Effekten in den ursprünglichen Reflektanzdaten unterscheiden. Auch lässt sich aus den Ergebnissen ableiten, dass der NDVI relativ gesehen die blickrichtungsabhängigen BRDF-Effekte minimieren kann. Für die untersuchten Pflanzengesellschaften der Tundra weichen die Off-Nadir NDVI-Werte nie mehr als 10 % von den Nadir-NDVI-Werten ab. Im Resümee dieser Studie wird nachgewiesen, dass Änderungen in der Sonnen-Objekt-Sensor-Geometrie direkt zu Reflektanzveränderungen in den Fernerkundungsdaten von arktischen Pflanzengesellschaften der Tundra entsprechend ihrer objekt-spezifischen BRDF-Charakteristiken führen. Da die verschiedenen Arten der Tundravegetation nur kleine, aber signifikante Unterschiede in der Oberflächenreflektanz zeigen, ist es wichtig die spektro-direktionalen Reflexionseigenschaften bei der Entwicklung von Algorithmen für Fernerkundungsprodukte zu berücksichtigen. KW - spektro-direktional KW - Fernerkundung KW - arktische Tundra KW - BRDF KW - EnMAP KW - spectro-directional KW - remote sensing KW - Arctic tundra KW - BRDF KW - EnMAP Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-70189 ER - TY - THES A1 - Beamish, Alison Leslie T1 - Hyperspectral remote sensing of the spatial and temporal heterogeneity of low Arctic vegetation T1 - Hyperspektrale Fernerkundung der räumlichen und zeitlichen Heterogenität niedriger arktischer Vegetation BT - the role of phenology, vegetation colour, and intrinsic ecosystem components BT - die Rolle von Phänologie, Vegetationsfarbe und intrinsischer Ökosystemkomponenten N2 - Arctic tundra ecosystems are experiencing warming twice the global average and Arctic vegetation is responding in complex and heterogeneous ways. Shifting productivity, growth, species composition, and phenology at local and regional scales have implications for ecosystem functioning as well as the global carbon and energy balance. Optical remote sensing is an effective tool for monitoring ecosystem functioning in this remote biome. However, limited field-based spectral characterization of the spatial and temporal heterogeneity limits the accuracy of quantitative optical remote sensing at landscape scales. To address this research gap and support current and future satellite missions, three central research questions were posed: • Does canopy-level spectral variability differ between dominant low Arctic vegetation communities and does this variability change between major phenological phases? • How does canopy-level vegetation colour images recorded with high and low spectral resolution devices relate to phenological changes in leaf-level photosynthetic pigment concentrations? • How does spatial aggregation of high spectral resolution data from the ground to satellite scale influence low Arctic tundra vegetation signatures and thereby what is the potential of upcoming hyperspectral spaceborne systems for low Arctic vegetation characterization? To answer these questions a unique and detailed database was assembled. Field-based canopy-level spectral reflectance measurements, nadir digital photographs, and photosynthetic pigment concentrations of dominant low Arctic vegetation communities were acquired at three major phenological phases representing early, peak and late season. Data were collected in 2015 and 2016 in the Toolik Lake Research Natural Area located in north central Alaska on the North Slope of the Brooks Range. In addition to field data an aerial AISA hyperspectral image was acquired in the late season of 2016. Simulations of broadband Sentinel-2 and hyperspectral Environmental and Mapping Analysis Program (EnMAP) satellite reflectance spectra from ground-based reflectance spectra as well as simulations of EnMAP imagery from aerial hyperspectral imagery were also obtained. Results showed that canopy-level spectral variability within and between vegetation communities differed by phenological phase. The late season was identified as the most discriminative for identifying many dominant vegetation communities using both ground-based and simulated hyperspectral reflectance spectra. This was due to an overall reduction in spectral variability and comparable or greater differences in spectral reflectance between vegetation communities in the visible near infrared spectrum. Red, green, and blue (RGB) indices extracted from nadir digital photographs and pigment-driven vegetation indices extracted from ground-based spectral measurements showed strong significant relationships. RGB indices also showed moderate relationships with chlorophyll and carotenoid pigment concentrations. The observed relationships with the broadband RGB channels of the digital camera indicate that vegetation colour strongly influences the response of pigment-driven spectral indices and digital cameras can track the seasonal development and degradation of photosynthetic pigments. Spatial aggregation of hyperspectral data from the ground to airborne, to simulated satel-lite scale was influenced by non-photosynthetic components as demonstrated by the distinct shift of the red edge to shorter wavelengths. Correspondence between spectral reflectance at the three scales was highest in the red spectrum and lowest in the near infra-red. By artificially mixing litter spectra at different proportions to ground-based spectra, correspondence with aerial and satellite spectra increased. Greater proportions of litter were required to achieve correspondence at the satellite scale. Overall this thesis found that integrating multiple temporal, spectral, and spatial data is necessary to monitor the complexity and heterogeneity of Arctic tundra ecosystems. The identification of spectrally similar vegetation communities can be optimized using non-peak season hyperspectral data leading to more detailed identification of vegetation communities. The results also highlight the power of vegetation colour to link ground-based and satellite data. Finally, a detailed characterization non-photosynthetic ecosystem components is crucial for accurate interpretation of vegetation signals at landscape scales. N2 - Die arktische Erwärmung beeinflusst Produktivität, Wachstums, Artenzusammensetzung, Phänologie und den Reproduktionserfolg arktischer Vegetation, mit Auswirkungen auf die Ökosystemfunktionen sowie auf den globalen Kohlenstoff- und Energiehaushalt. Feldbasierte Messungen und spektrale Charakterisierungen der räumlichen und zeitlichen Heterogenität arktischer Vegetationsgemeinschaften sind limitiert und die Genauigkeit fernerkundlicher Methoden im Landschaftsmaßstab eingeschränkt. Um diese Forschungslücke zu schließen und aktuelle und zukünftige Satellitenmissionen zu unterstützen, wurden drei zentrale Forschungsfragen entwickelt: 1) Wie unterscheidet sich die spektrale Variabilität des Kronendaches zwischen dominanten Vegetationsgemeinschaften der niederen Arktis und wie verändert sich diese Variabilität zwischen den wichtigsten phänologischen Phasen? 2) Wie hängen Aufnahmen der Vegetationsfarbe des Kronendaches von hoch und niedrig auflösenden Geräten mit phänologischen Veränderungen des photosynthetischen Pigmentgehalts auf Blattebene zusammen? 3) Wie beeinflusst die räumliche Aggregation von Daten mit hoher spektraler Auflösung von der Boden- bis zur Satelliten-Skala die arktischen Vegetationssignale der Tundra und welches Potenzial haben zukünftige hyperspektraler Satellitensysteme für die arktische Vegetationscharakterisierung? Zur Beantwortung dieser Fragen wurde eine detaillierte Datenbank aus feldbasierten Daten erstellt und mit hyperspektralen Luftbildern sowie multispektralen Sentinel-2 und simulierten hyperspektralen EnMAP Satellitendaten verglichen. Die Ergebnisse zeigten, dass die Spätsai-son am besten geeignet ist um dominante Vegetationsgemeinschaften mit Hilfe von hyper-spektralen Daten zu identifizieren. Ebenfalls konnte gezeigt werden, dass die mit handelsüb-lichen Digitalkameras aufgenommene Vegetationsfarbe pigmentgesteuerte Spektralindizes stark beeinflusst und den Verlauf von photosynthetischen Pigmenten nachverfolgen kann. Die räumliche Aggregation hyperspektraler Daten von der Boden- über die Luft- zur Satelli-tenskala wurde durch nicht-photosynthetische Komponenten beeinflusst und die spektralen Reflexionsvermögen der drei Skalen stimmten im roten Spektrum am höchsten und im nahen Infrarotbereich am niedrigsten überein. Die vorliegende Arbeit zeigt, dass die Integration zeitlicher, spektraler und räumlicher Daten notwendig ist, um Komplexität und Heterogenität arktischer Vegetationsreaktionen in Reaktion auf klimatische Veränderungen zu überwachen. KW - hyperspectral remote sensing KW - Arctic tundra KW - vegetation KW - imaging spectroscopy KW - hyperspektral Fernerkundung KW - arktische Tundra KW - Vegetation KW - Spektroskopie Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-425922 ER -