TY - JOUR A1 - Cervantes Villa, Juan Sebastian A1 - Shprits, Yuri Y. A1 - Aseev, Nikita A1 - Drozdov, Alexander A1 - Castillo Tibocha, Angelica Maria A1 - Stolle, Claudia T1 - Identifying radiation belt electron source and loss processes by assimilating spacecraft data in a three-dimensional diffusion model JF - Journal of geophysical research : Space physics N2 - Data assimilation aims to blend incomplete and inaccurate data with physics-based dynamical models. In the Earth's radiation belts, it is used to reconstruct electron phase space density, and it has become an increasingly important tool in validating our current understanding of radiation belt dynamics, identifying new physical processes, and predicting the near-Earth hazardous radiation environment. In this study, we perform reanalysis of the sparse measurements from four spacecraft using the three-dimensional Versatile Electron Radiation Belt diffusion model and a split-operator Kalman filter over a 6-month period from 1 October 2012 to 1 April 2013. In comparison to previous works, our 3-D model accounts for more physical processes, namely, mixed pitch angle-energy diffusion, scattering by Electromagnetic Ion Cyclotron waves, and magnetopause shadowing. We describe how data assimilation, by means of the innovation vector, can be used to account for missing physics in the model. We use this method to identify the radial distances from the Earth and the geomagnetic conditions where our model is inconsistent with the measured phase space density for different values of the invariants mu and K. As a result, the Kalman filter adjusts the predictions in order to match the observations, and we interpret this as evidence of where and when additional source or loss processes are active. The current work demonstrates that 3-D data assimilation provides a comprehensive picture of the radiation belt electrons and is a crucial step toward performing reanalysis using measurements from ongoing and future missions. KW - acceleration KW - code KW - density KW - emic waves KW - energetic particle KW - mechanisms KW - reanalysis KW - ultrarelativistic electrons KW - weather Y1 - 2019 U6 - https://doi.org/10.1029/2019JA027514 SN - 2169-9380 SN - 2169-9402 VL - 125 IS - 1 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Cao, Xing A1 - Ni, Binbin A1 - Summers, Danny A1 - Shprits, Yuri Y. A1 - Gu, Xudong A1 - Fu, Song A1 - Lou, Yuequn A1 - Zhang, Yang A1 - Ma, Xin A1 - Zhang, Wenxun A1 - Huang, He A1 - Yi, Juan T1 - Sensitivity of EMIC wave-driven scattering loss of ring current protons to wave normal angle distribution JF - Geophysical research letters N2 - Electromagnetic ion cyclotron waves have long been recognized to play a crucial role in the dynamic loss of ring current protons. While the field-aligned propagation approximation of electromagnetic ion cyclotron waves was widely used to quantify the scattering loss of ring current protons, in this study, we find that the wave normal distribution strongly affects the pitch angle scattering efficiency of protons. Increase of peak normal angle or angular width can considerably reduce the scattering rates of <= 10 keV protons. For >10 keV protons, the field-aligned propagation approximation results in a pronounced underestimate of the scattering of intermediate equatorial pitch angle protons and overestimates the scattering of high equatorial pitch angle protons by orders of magnitude. Our results suggest that the wave normal distribution of electromagnetic ion cyclotron waves plays an important role in the pitch angle evolution and scattering loss of ring current protons and should be incorporated in future global modeling of ring current dynamics. Y1 - 2019 U6 - https://doi.org/10.1029/2018GL081550 SN - 0094-8276 SN - 1944-8007 VL - 46 IS - 2 SP - 590 EP - 598 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Wang, Dedong A1 - Shprits, Yuri Y. A1 - Zhelayskaya, Irina S. A1 - Agapitov, Oleksiy A1 - Drozdov, Alexander A1 - Aseev, Nikita T1 - Analytical chorus wave model derived from van Allen Probe Observations JF - Journal of geophysical research : Space physics N2 - Chorus waves play an important role in the dynamic evolution of energetic electrons in the Earth's radiation belts and ring current. Using more than 5 years of Van Allen Probe data, we developed a new analytical model for upper‐band chorus (UBC; 0.5fce < f < fce) and lower‐band chorus (LBC; 0.05fce < f < 0.5fce) waves, where fce is the equatorial electron gyrofrequency. By applying polynomial fits to chorus wave root mean square amplitudes, we developed regression models for LBC and UBC as a function of geomagnetic activity (Kp), L, magnetic latitude (λ), and magnetic local time (MLT). Dependence on Kp is separated from the dependence on λ, L, and MLT as Kp‐scaling law to simplify the calculation of diffusion coefficients and inclusion into particle tracing codes. Frequency models for UBC and LBC are also developed, which depends on MLT and magnetic latitude. This empirical model is valid in all MLTs, magnetic latitude up to 20°, Kp ≤ 6, L‐shell range from 3.5 to 6 for LBC and from 4 to 6 for UBC. The dependence of root mean square amplitudes on L are different for different bands, which implies different energy sources for different wave bands. This analytical chorus wave model is convenient for inclusion in quasi‐linear diffusion calculations of electron scattering rates and particle simulations in the inner magnetosphere, especially for the newly developed four‐dimensional codes, which require significantly improved wave parameterizations. KW - chorus waves KW - radiation belt electrons KW - ring current electrons KW - analytical model KW - wave-particle interactions KW - diffusion coefficients Y1 - 2019 U6 - https://doi.org/10.1029/2018JA026183 SN - 2169-9380 SN - 2169-9402 VL - 124 IS - 2 SP - 1063 EP - 1084 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Kim, Kyung-Chan A1 - Shprits, Yuri Y. T1 - Statistical Analysis of Hiss Waves in Plasmaspheric Plumes Using Van Allen Probe Observations JF - Journal of geophysical research : Space physics N2 - Plasmaspheric hiss waves commonly observed in high‐density regions in the Earth's magnetosphere are known to be one of the main contributors to the loss of radiation belt electrons. There has been a lot of effort to investigate the distributions of hiss waves in the plasmasphere, while relatively little attention has been given to those in the plasmaspheric plume. In this study, we present for the first time a statistical analysis of the occurrence and the spatial distribution of wave amplitudes and wave normal angles for hiss waves in plumes using Van Allen Probes observations during the period of October 2012 to December 2016. Statistical results show that a wide range of hiss wave amplitudes in plumes from a few picotesla to >100 pT is observed, but a modest (<20 pT) wave amplitude is more commonly observed regardless of geomagnetic activity in both the midnight‐to‐dawn and dusk sector. By contrast, stronger amplitude hiss occurs preferentially during geomagnetically active times in the dusk sector. The wave normal angles are distributed over a broad range from 0° to 90° with a bimodal distribution: a quasi‐field‐aligned population (<20°) with an occurrence rate of <60% and an oblique one (>50°) with a relative low occurrence rate of ≲20%. Therefore, from a statistical point of view, we confirm that the hiss intensity (a few tens of picotesla) and field‐aligned hiss wave adopted in previous simulation studies are a reasonable assumption but stress that the activity dependence of the wave amplitude should be considered. KW - plasmaspheric hiss KW - plasmaspheric plume KW - Van Allen Probes Y1 - 2019 U6 - https://doi.org/10.1029/2018JA026458 SN - 2169-9380 SN - 2169-9402 VL - 124 IS - 3 SP - 1904 EP - 1915 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Aseev, Nikita A1 - Shprits, Yuri Y. T1 - Reanalysis of ring current electron phase space densities using van allen probe observations, convection model, and log‐normal kalman filter JF - Space weather : the international journal of research and applications N2 - Models of ring current electron dynamics unavoidably contain uncertainties in boundary conditions, electric and magnetic fields, electron scattering rates, and plasmapause location. Model errors can accumulate with time and result in significant deviations of model predictions from observations. Data assimilation offers useful tools which can combine physics-based models and measurements to improve model predictions. In this study, we systematically analyze performance of the Kalman filter applied to a log-transformed convection model of ring current electrons and Van Allen Probe data. We consider long-term dynamics of mu = 2.3 MeV/G and K = 0.3 G(1/2) R-E electrons from 1 February 2013 to 16 June 2013. By using synthetic data, we show that the Kalman filter is capable of correcting errors in model predictions associated with uncertainties in electron lifetimes, boundary conditions, and convection electric fields. We demonstrate that reanalysis retains features which cannot be fully reproduced by the convection model such as storm-time earthward propagation of the electrons down to 2.5 R-E. The Kalman filter can adjust model predictions to satellite measurements even in regions where data are not available. We show that the Kalman filter can adjust model predictions in accordance with observations for mu = 0.1, 2.3, and 9.9 MeV/G and constant K = 0.3 G(1/2) R-E electrons. The results of this study demonstrate that data assimilation can improve performance of ring current models, better quantify model uncertainties, and help deeper understand the physics of the ring current particles. Y1 - 2019 U6 - https://doi.org/10.1029/2018SW002110 SN - 1542-7390 VL - 17 IS - 4 SP - 619 EP - 638 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Smirnov, Artem G. A1 - Kronberg, Elena A. A1 - Latallerie, F. A1 - Daly, Patrick W. A1 - Aseev, Nikita A1 - Shprits, Yuri Y. A1 - Kellerman, Adam C. A1 - Kasahara, Satoshi A1 - Turner, Drew L. A1 - Taylor, M. G. G. T. T1 - Electron Intensity Measurements by the Cluster/RAPID/IES Instrument in Earth's Radiation Belts and Ring Current JF - Space Weather: The International Journal of Research and Applications N2 - Plain Language Summary Radiation belts of the Earth, which are the zones of charged energetic particles trapped by the geomagnetic field, comprise enormous and dynamic systems. While the inner radiation belt, composed mainly of high-energy protons, is relatively stable, the outer belt, filled with energetic electrons, is highly variable and depends substantially on solar activity. Hence, extended reliable observations and the improved models of the electron intensities in the outer belt depending on solar wind parameters are necessary for prediction of their dynamics. The Cluster mission has been measuring electron flux intensities in the radiation belts since its launch in 2000, thus providing a huge dataset that can be used for radiation belts analysis. Using 16 years of electron measurements by the Cluster mission corrected for background contamination, we derived a uniform linear-logarithmic dependence of electron fluxes in the outer belt on the solar wind dynamic pressure. Y1 - 2019 U6 - https://doi.org/10.1029/2018SW001989 SN - 1542-7390 VL - 17 IS - 4 SP - 553 EP - 566 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Dobynde, M. I. A1 - Effenberger, Frederic A1 - Kartashov, D. A. A1 - Shprits, Yuri Y. A1 - Shurshakov, V. A. T1 - Ray-tracing simulation of the radiation dose distribution on the surface of the spherical phantom of the MATROSHKA-R experiment onboard the ISS JF - Life sciences in space research N2 - Space radiation is one of the main concerns for human space flights. The prediction of the radiation dose for the actual spacecraft geometry is very important for the planning of long-duration missions. We present a numerical method for the fast calculation of the radiation dose rate during a space flight. We demonstrate its application for dose calculations during the first and the second sessions of the MATROSHKA-R space experiment with a spherical tissue-equivalent phantom. The main advantage of the method is the short simulation time, so it can be applied for urgent radiation dose calculations for low-Earth orbit space missions. The method uses depth-dose curve and shield-and-composition distribution functions to calculate a radiation dose at the point of interest. The spacecraft geometry is processed into a shield-and-composition distribution function using a ray-tracing method. Depth-dose curves are calculated using the GEANT4 Monte-Carlo code (version 10.00.P02) for a double-layer aluminum-water shielding. Aluminum-water shielding is a good approximation of the real geometry, as water is a good equivalent for biological tissues, and aluminum is the major material of spacecraft bodies. KW - Space radiation KW - Radiation protection KW - Radiation dose calculation KW - GEANT4 modeling KW - Radiation on the ISS KW - MATROSHKA-R Y1 - 2019 U6 - https://doi.org/10.1016/j.lssr.2019.04.001 SN - 2214-5524 SN - 2214-5532 VL - 21 SP - 65 EP - 72 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Qin, Murong A1 - Hudson, Mary A1 - Li, Zhao A1 - Millan, Robyn A1 - Shen, Xiaochen A1 - Shprits, Yuri Y. A1 - Woodger, Leslie A1 - Jaynes, Allison A1 - Kletzing, Craig T1 - Investigating loss of relativistic electrons associated with EMIC Waves at low L values on 22 June 2015 JF - Journal of geophysical research : Space physics N2 - In this study, rapid loss of relativistic radiation belt electrons at low L* values (2.4-3.2) during a strong geomagnetic storm on 22 June 2015 is investigated along with five possible loss mechanisms. Both the particle and wave data are obtained from the Van Allen Probes. Duskside H+ band electromagnetic ion cyclotron (EMIC) waves were observed during a rapid decrease of relativistic electrons with energy above 5.2 MeV occurring outside the plasma sphere during extreme magnetopause compression. Lower He+ composition and enriched O+ composition are found compared to typical values assumed in other studies of cyclotron resonant scattering of relativistic electrons by EMIC waves. Quantitative analysis demonstrates that even with the existence of He+ band EMIC waves, it is the H+ band EMIC waves that are likely to cause the depletion at small pitch angles and strong gradients in pitch angle distributions of relativistic electrons with energy above 5.2 MeV at low L values for this event. Very low frequency wave activity at other magnetic local time can be favorable for the loss of relativistic electrons at higher pitch angles. An illustrative calculation that combines the nominal pitch angle scattering rate due to whistler mode chorus at high pitch angles with the H+ band EMIC wave loss rate at low pitch angles produces loss on time scale observed at L = 2.4-3.2. At high L values and lower energies, radial loss to the magnetopause is a viable explanation. Y1 - 2019 U6 - https://doi.org/10.1029/2018JA025726 SN - 2169-9380 SN - 2169-9402 VL - 124 IS - 6 SP - 4022 EP - 4036 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Denton, Richard E. A1 - Ofman, L. A1 - Shprits, Yuri Y. A1 - Bortnik, J. A1 - Millan, R. M. A1 - Rodger, C. J. A1 - da Silva, C. L. A1 - Rogers, B. N. A1 - Hudson, M. K. A1 - Liu, K. A1 - Min, K. A1 - Glocer, A. A1 - Komar, C. T1 - Pitch Angle Scattering of Sub-MeV Relativistic Electrons by Electromagnetic Ion Cyclotron Waves JF - Journal of geophysical research : Space physics N2 - Electromagnetic ion cyclotron (EMIC) waves have long been considered to be a significant loss mechanism for relativistic electrons. This has most often been attributed to resonant interactions with the highest amplitude waves. But recent observations have suggested that the dominant energy of electrons precipitated to the atmosphere may often be relatively low, less than 1 MeV, whereas the minimum resonant energy of the highest amplitude waves is often greater than 2 MeV. Here we use relativistic electron test particle simulations in the wavefields of a hybrid code simulation of EMIC waves in dipole geometry in order to show that significant pitch angle scattering can occur due to interaction with low-amplitude short-wavelength EMIC waves. In the case we examined, these waves are in the H band (at frequencies above the He+ gyrofrequency), even though the highest amplitude waves were in the He band frequency range (below the He+ gyrofrequency). We also present wave power distributions for 29 EMIC simulations in straight magnetic field line geometry that show that the high wave number portion of the spectrum is in every case mostly due to the H band waves. Though He band waves are often associated with relativistic electron precipitation, it is possible that the He band waves do not directly scatter the sub-megaelectron volts (sub-MeV) electrons, but that the presence of He band waves is associated with high plasma density which lowers the minimum resonant energy so that these electrons can more easily resonate with the H band waves. KW - electromagnetic ion cyclotron waves KW - EMIC KW - relativistic electron precipitation KW - pitch angle scattering KW - wave particle interaction KW - radiation belts Y1 - 2019 U6 - https://doi.org/10.1029/2018JA026384 SN - 2169-9402 VL - 124 IS - 7 SP - 5610 EP - 5626 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Woodfield, Emma E. A1 - Glauert, Saraha A. A1 - Menietti, J. Douglas A1 - Averkamp, Terrance F. A1 - Horne, Richard B. A1 - Shprits, Yuri Y. T1 - Rapid Electron Acceleration in Low‐Density Regions of Saturn's Radiation Belt by Whistler Mode Chorus Waves JF - Geophysical research letters N2 - Electron acceleration at Saturn due to whistler mode chorus waves has previously been assumed to be ineffective; new data closer to the planet show it can be very rapid (factor of 104 flux increase at 1 MeV in 10 days compared to factor of 2). A full survey of chorus waves at Saturn is combined with an improved plasma density model to show that where the plasma frequency falls below the gyrofrequency additional strong resonances are observed favoring electron acceleration. This results in strong chorus acceleration between approximately 2.5 R-S and 5.5 R-S outside which adiabatic transport may dominate. Strong pitch angle dependence results in butterfly pitch angle distributions that flatten over a few days at 100s keV, tens of days at MeV energies which may explain observations of butterfly distributions of MeV electrons near L = 3. Including cross terms in the simulations increases the tendency toward butterfly distributions. Plain Language Summary Radiation belts are hazardous regions found around several of the planets in our Solar System. They consist of very hot, electrically charged particles trapped in the magnetic field of the planet. At Saturn the most important way to heat these particles has for many years been thought to involve the particles drifting closer toward the planet. This paper adds to the emerging idea at Saturn that a different way to heat the particles is also possible where the heating is done by waves, in a similar way to what we find at the Earth. We use recent information from the Cassini spacecraft on the number and location of particles and also of the waves strength and location combined with computer simulations to show that a particular wave called chorus is excellent at heating the particles where the surrounding number of cold particles is low. Y1 - 2019 U6 - https://doi.org/10.1029/2019GL083071 SN - 0094-8276 SN - 1944-8007 VL - 46 IS - 13 SP - 7191 EP - 7198 PB - American Geophysical Union CY - Washington ER -