TY - JOUR A1 - Maass, Friedrich A1 - Utecht, Manuel Martin A1 - Stremlau, Stephan A1 - Gille, Marie A1 - Schwarz, Jutta A1 - Hecht, Stefan A1 - Klamroth, Tillmann A1 - Tegeder, Petra T1 - Electronic structure changes during the on-surface synthesis of nitrogen-doped chevron-shaped graphene nanoribbons JF - Physical review : B, Condensed matter and materials physics N2 - Utilizing suitable precursor molecules, a thermally activated and surface-assisted synthesis results in the formation of defect-free graphene nanoribbons (GNRs), which exhibit electronic properties that are not present in extended graphene. Most importantly, they have a band gap in the order of a few electron volts, depending on the nanoribbon width. In this study, we investigate the electronic structure changes during the formation of GNRs, nitrogen-doped (singly and doubly N-doped) as well as non-N-doped chevron-shaped CGNRs on Au(111). Thus we determine the optical gaps of the precursor molecules, the intermediate nonaromatic polymers, and finally the aromatic GNRs, using high-resolution electron energy loss spectroscopy and density functional theory calculations. As expected, we find no influence of N-doping on the size of the optical gaps. The gap of the precursor molecules is around 4.5 eV. Polymerization leads to a reduction of the gap to a value of 3.2 eV due to elongation and thus enhanced delocalization. The CGNRs exhibit a band gap of 2.8 eV, thus the gap is further reduced in the nanoribbons, since they exhibit an extended delocalized pi-electron system. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevB.96.045434 SN - 2469-9950 SN - 2469-9969 VL - 96 PB - American Physical Society CY - College Park ER -