TY - JOUR A1 - Meyer, Sebastian Tobias A1 - Ptacnik, Robert A1 - Hillebrand, Helmut A1 - Bessler, Holger A1 - Buchmann, Nina A1 - Ebeling, Anne A1 - Eisenhauer, Nico A1 - Engels, Christof A1 - Fischer, Markus A1 - Halle, Stefan A1 - Klein, Alexandra-Maria A1 - Oelmann, Yvonne A1 - Roscher, Christiane A1 - Rottstock, Tanja A1 - Scherber, Christoph A1 - Scheu, Stefan A1 - Schmid, Bernhard A1 - Schulze, Ernst-Detlef A1 - Temperton, Vicky M. A1 - Tscharntke, Teja A1 - Voigt, Winfried A1 - Weigelt, Alexandra A1 - Wilcke, Wolfgang A1 - Weisser, Wolfgang W. T1 - Biodiversity-multifunctionality relationships depend on identity and number of measured functions JF - Nature Ecology & Evolution N2 - Biodiversity ensures ecosystem functioning and provisioning of ecosystem services, but it remains unclear how biodiversity-ecosystem multifunctionality relationships depend on the identity and number of functions considered. Here, we demonstrate that ecosystem multifunctionality, based on 82 indicator variables of ecosystem functions in a grassland biodiversity experiment, increases strongly with increasing biodiversity. Analysing subsets of functions showed that the effects of biodiversity on multifunctionality were stronger when more functions were included and that the strength of the biodiversity effects depended on the identity of the functions included. Limits to multifunctionality arose from negative correlations among functions and functions that were not correlated with biodiversity. Our findings underline that the management of ecosystems for the protection of biodiversity cannot be replaced by managing for particular ecosystem functions or services and emphasize the need for specific management to protect biodiversity. More plant species from the experimental pool of 60 species contributed to functioning when more functions were considered. An individual contribution to multifunctionality could be demonstrated for only a fraction of the species. Y1 - 2017 U6 - https://doi.org/10.1038/s41559-017-0391-4 SN - 2397-334X VL - 2 IS - 1 SP - 44 EP - 49 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Guerrero-Ramirez, Nathaly Rokssana A1 - Craven, Dylan A1 - Reich, Peter B. A1 - Ewel, John J. A1 - Isbell, Forest A1 - Koricheva, Julia A1 - Parrotta, John A. A1 - Auge, Harald A1 - Erickson, Heather E. A1 - Forrester, David I. A1 - Hector, Andy A1 - Joshi, Jasmin Radha A1 - Montagnini, Florencia A1 - Palmborg, Cecilia A1 - Piotto, Daniel A1 - Potvin, Catherine A1 - Roscher, Christiane A1 - van Ruijven, Jasper A1 - Tilman, David A1 - Wilsey, Brian A1 - Eisenhauer, Nico T1 - Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems JF - Nature ecology & evolution N2 - The effects of biodiversity on ecosystem functioning generally increase over time, but the underlying processes remain unclear. Using 26 long-term grassland and forest experimental ecosystems, we demonstrate that biodiversity-ecosystem functioning relationships strengthen mainly by greater increases in functioning in high-diversity communities in grasslands and forests. In grasslands, biodiversity effects also strengthen due to decreases in functioning in low-diversity communities. Contrasting trends across grasslands are associated with differences in soil characteristics. Y1 - 2017 U6 - https://doi.org/10.1038/s41559-017-0325-1 SN - 2397-334X VL - 1 IS - 11 SP - 1639 EP - 1642 PB - Nature Publ. Group CY - London ER -