TY - GEN A1 - Kalinkat, Gregor A1 - Cabral, Juliano Sarmento A1 - Darwall, William A1 - Ficetola, G. Francesco A1 - Fisher, Judith L. A1 - Giling, Darren P. A1 - Gosselin, Marie-Pierre A1 - Grossart, Hans-Peter A1 - Jaehnig, Sonja C. A1 - Jeschke, Jonathan M. A1 - Knopf, Klaus A1 - Larsen, Stefano A1 - Onandia, Gabriela A1 - Paetzig, Marlene A1 - Saul, Wolf-Christian A1 - Singer, Gabriel A1 - Sperfeld, Erik A1 - Jaric, Ivan T1 - Flagship umbrella species needed for the conservation of overlooked aquatic biodiversity T2 - Conservation biology : the journal of the Society for Conservation Biology Y1 - 2017 U6 - https://doi.org/10.1111/cobi.12813 SN - 0888-8892 SN - 1523-1739 VL - 31 SP - 481 EP - 485 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Cabral, Juliano Sarmento A1 - Valente, Luis A1 - Hartig, Florian T1 - Mechanistic simulation models in macroecology and biogeography BT - state-of-art and prospects JF - Ecography : pattern and diversity in ecology N2 - Macroecology and biogeography are concerned with understanding biodiversity patterns across space and time. In the past, the two disciplines have addressed this question mainly with correlative approaches, despite frequent calls for more mechanistic explanations. Recent advances in computational power, theoretical understanding, and statistical tools are, however, currently facilitating the development of more system-oriented, mechanistic models. We review these models, identify different model types and theoretical frameworks, compare their processes and properties, and summarize emergent findings. We show that ecological (physiology, demographics, dispersal, biotic interactions) and evolutionary processes, as well as environmental and human-induced drivers, are increasingly modelled mechanistically; and that new insights into biodiversity dynamics emerge from these models. Yet, substantial challenges still lie ahead for this young research field. Among these, we identify scaling, calibration, validation, and balancing complexity as pressing issues. Moreover, particular process combinations are still understudied, and so far models tend to be developed for specific applications. Future work should aim at developing more flexible and modular models that not only allow different ecological theories to be expressed and contrasted, but which are also built for tight integration with all macroecological data sources. Moving the field towards such a ‘systems macroecology’ will test and improve our understanding of the causal pathways through which eco-evolutionary processes create diversity patterns across spatial and temporal scales. Y1 - 2016 U6 - https://doi.org/10.1111/ecog.02480 SN - 0906-7590 SN - 1600-0587 VL - 40 IS - 2 SP - 267 EP - 280 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Borregaard, Michael K. A1 - Amorim, Isabel R. A1 - Borges, Paulo A. V. A1 - Cabral, Juliano Sarmento A1 - Fernandez-Palacios, Jose M. A1 - Field, Richard A1 - Heaney, Lawrence R. A1 - Kreft, Holger A1 - Matthews, Thomas J. A1 - Olesen, Jens M. A1 - Price, Jonathan A1 - Rigal, Francois A1 - Steinbauer, Manuel J. A1 - Triantis, Konstantinos A. A1 - Valente, Luis A1 - Weigelt, Patrick A1 - Whittaker, Robert J. T1 - Oceanic island biogeography through the lens of the general dynamic model: assessment and prospect JF - Biological reviews KW - archipelago KW - diversity theory KW - general dynamic model KW - island biogeography KW - island evolution KW - trait evolution KW - volcanic islands Y1 - 2017 U6 - https://doi.org/10.1111/brv.12256 SN - 1464-7931 SN - 1469-185X VL - 92 SP - 830 EP - 853 PB - Wiley CY - Hoboken ER -