TY - JOUR A1 - Sborikas, Martynas A1 - Qiu, Xunlin A1 - Wirges, Werner A1 - Gerhard, Reimund A1 - Jenninger, Werner A1 - Lovera, Deliani T1 - Screen printing for producing ferroelectret systems with polymer-electret films and well-defined cavities JF - Applied physics : A, Materials science & processing N2 - We report a process for preparing polymer ferroelectrets by means of screen printing-a technology that is widely used for the two-dimensional patterning of printed layers. In order to produce polymer-film systems with cavities that are suitable for bipolar electric charging, a screen-printing paste is deposited through a screen with a pre-designed pattern onto the surface of a polymer electret film. Another such polymer film is placed on top of the printed pattern, and well-defined cavities are formed in-between. During heating and curing, the polymer films are tightly bonded to the patterned paste layer so that a stable three-layer system is obtained. In the present work, polycarbonate (PC) films have been employed as electret layers. Screen printing, curing and charging led to PC ferroelectret systems with a piezoelectric d (33) coefficient of about 28 pC/N that is stable up to 100 C-a similar to. Due to the rather soft patterned layer, d (33) strongly decreases already for static pressures of tens of kPa. The results demonstrate the suitability of screen printing for the preparation of ferroelectret systems. Y1 - 2014 U6 - https://doi.org/10.1007/s00339-013-7998-3 SN - 0947-8396 SN - 1432-0630 VL - 114 IS - 2 SP - 515 EP - 520 PB - Springer CY - New York ER - TY - JOUR A1 - Zhao, Qiang A1 - Dunlop, John William Chapman A1 - Qiu, Xunlin A1 - Huang, Feihe A1 - Zhang, Zibin A1 - Heyda, Jan A1 - Dzubiella, Joachim A1 - Antonietti, Markus A1 - Yuan, Jiayin T1 - An instant multi-responsive porous polymer actuator driven by solvent molecule sorption JF - Nature Communications N2 - Fast actuation speed, large-shape deformation and robust responsiveness are critical to synthetic soft actuators. A simultaneous optimization of all these aspects without trade-offs remains unresolved. Here we describe porous polymer actuators that bend in response to acetone vapour (24 kPa, 20 degrees C) at a speed of an order of magnitude faster than the state-of-the-art, coupled with a large-scale locomotion. They are meanwhile multi-responsive towards a variety of organic vapours in both the dry and wet states, thus distinctive from the traditional gel actuation systems that become inactive when dried. The actuator is easy-to-make and survives even after hydrothermal processing (200 degrees C, 24 h) and pressing-pressure (100 MPa) treatments. In addition, the beneficial responsiveness is transferable, being able to turn 'inert' objects into actuators through surface coating. This advanced actuator arises from the unique combination of porous morphology, gradient structure and the interaction between solvent molecules and actuator materials. Y1 - 2014 U6 - https://doi.org/10.1038/ncomms5293 SN - 2041-1723 VL - 5 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Qiu, Xunlin A1 - Wirges, Werner A1 - Gerhard, Reimund T1 - Polarization and Hysteresis in Tubular-Channel Fluoroethylenepropylene-Copolymer Ferroelectrets JF - Ferroelectrics N2 - Polarization-vs.-applied-voltage hysteresis curves are recorded on tubular-channel fluoroethylene-propylene (FEP) copolymer ferroelectrets by means of a modified Sawyer-Tower circuit. Dielectric barrier discharges (DBDs) inside the cavities are triggered when the applied voltage is sufficiently high. During the DBDs, the cavities become man-made macroscopic dipoles which build up an effective polarization in the ferroelectret. Therefore, a phenomenological hysteresis curve is observed. From the hysteresis loop, the remanent polarization and the coercive field can be determined. Furthermore, the polarization can be related to the respective piezoelectric coefficient of the ferroelectret. The proposed method is easy to implement and is useful for characterization, further development and optimization of ferro- or piezoelectrets. KW - Ferroelectrets KW - piezoelectrets KW - tubular-channel polymer systems KW - dielectric barrier discharge (DBD) KW - fluoroethylenepropylene (FEP) copolymer KW - piezoelectricity-polarization relation Y1 - 2014 U6 - https://doi.org/10.1080/00150193.2014.964603 SN - 0015-0193 SN - 1563-5112 VL - 472 IS - 1 SP - 100 EP - 109 PB - Routledge, Taylor & Francis Group CY - Abingdon ER -